گروه آموزشی شیمی ناحیه 2 اراک
تبادل نظر با همکاران گروه شیمی 
سرعت واکنش در شیمی  سرعت واکنش ، عبارت از تغییر غلظت هر یک از مواد اولیه یا مواد حاصل نسبت به زمان انجام واکنش است.  


  
● سرعت واکنش

 

سرعت واکنش ، عبارت از تغییر غلظت هر یک از مواد اولیه یا مواد حاصل نسبت به زمان انجام واکنش است.

 
● نگاه

 
سرعت یک واکنش ، روند تبدیل مواد واکنش دهنده به محصول در مدت زمان معینی را نشان می‌دهد. سرعت واکنشها یکی از مهمترین بحثها در سینیتیک شیمیایی است. شیمیدانها همیشه دنبال راهی هستند که سرعت واکنش مفید را بالا ببرند تا مثلا در زمان کوتاه بازده بالایی داشته باشند و یا در پی راهی برای کاهش سرعت یا متوقف ساختن برخی واکنشهای مضر هستند. بعنوان مثال رنگ کردن سطح یک وسیله آهنی روشی برای متوقف ساختن و یا کم کردن سرعت زنگ زدگی و جلوگیری از ایجاد اکسید آهن است.

 

 ● طبقه بندی واکنشها برحسب سرعت

 
هدف از مطالعه سرعت یک واکنش این است که بدانیم آن واکنش چقدر سریع رخ می‌دهد. ترمودینامیک شیمیایی ، امکان وقوع واکنش را پیش‌بینی می‌کند، اما سینتیک شیمیایی چگونگی انجام یک واکنش و مراحل انجام آن و سرعت پیشرفت واکنش را بیان می‌کند. از لحاظ سرعت ، واکنشها به چند دسته تقسیم می‌شوند:

۱) واکنشهای خیلی سریع که زمان انجام این واکنشها خیلی کم و حدود ۰,۰۰۰۱ ثانیه است.

۲) واکنشهای سریع که زمان انجام این واکنشها کم و در حدود حساسیت انسان به زمان (ثانیه) است.

۳) واکنشهای معمولی ، اکثر واکنشهایی که در آزمایشگاهها با آنها سر و کار داریم از این نوع هستند و در حدود دقیقه‌ها یا چند ساعت طول می‌کشند.

۴) واکنشهای کند که در حدود روزها و هفته‌ها طول می‌کشند.

۵) واکنشهای خیلی کند که در حدود سالها و قرنها طول می‌کشند.

فقط تعداد اندکی از واکنشهای شیمیایی در سراسر فرآیند با سرعت ثابتی پیش می‌روند. بیشتر واکنشها در آغاز واکنش که غلظت واکنش‌دهنده‌ها بالا است با سرعت پیش رفته و با کم شدن غلظت از سرعت کاسته شده و با کامل شدن واکنش به صفر می‌رسد. برخی از واکنشها هم سرعت آنها پس از مدتی ثابت می‌ماند. چنین واکنشهایی ، واکنشهای تعادلی نام دارند.

 ● عوامل مؤثر بر سرعت واکنش

 
عوامل گوناگونی بر سرعت واکنش تاثیر دارند که بطور مختصر در مورد هر کدام توضیحی ارایه می‌شود.

 
▪ حالت فیزیکی واکنش دهنده‌ها

 

برای انجام یک واکنش ، واکنش‌دهنده‌ها باید با هم مخلوط شوند تا در مجاورت همدیگر قرار گیرند. اگر واکنش‌دهنده‌ها هم‌فاز باشند، یعنی همگی گاز یا بصورت حل شده در حلالی باشند، واکنش با سرعت بیشتری رخ می‌دهد.

 

▪ غلظت

 
غلظت بیشتر واکنش‌دهنده‌ها باعث ایجاد برخورد بیشتر بین آنها می‌شود و هر چه تعداد برخوردها بیشتر باشد، تعداد برخوردهای موثر هم بالا می‌رود بنابراین سرعت واکنش هم بیشتر می‌شود.

 

▪ دما

 
از مهمترین عوامل مؤثر بر سرعت واکنشهای شیمیایی است. در برخی از واکنشها با افزایش چند درجه سانتی‌گراد ، سرعت واکنش ممکن است چند برابر بیشتر شود. البته استثناهایی هم وجود دارد.

 
▪ کاتالیزور

 
کاتالیزورها سرعت یک واکنش شیمیایی را که از لحاظ ترمودینامیکی قابل انجام است، تغییر می‌دهند. بنابراین نمی‌توانند واکنشهایی را که از نظر ترمودینامیک امکان‌پذیر نیستند، به انجام برسانند. کاتالیزورها با پیش بردن یک واکنش از مسیر دیگر انرژی فعالسازی را کم کرده و باعث افزایش سرعت واکنشها می‌شوند.

 

● نقش برخورد در سرعت واکنش

 
برای انجام یک واکنش شیمیایی ، باید مولکولهای واکنش‌دهنده آنقدر به هم نزدیک شوند تا بین آنها برخورد ایجاد شود. این برخوردها وقتی منجر به انجام واکنش می‌شوند که مؤثر باشند، یعنی جهت‌گیری و انرژی برخوردها طوری باشد که بر اثر برخورد برخی پیوندها شکسته شده و پیوندهای جدیدی تشکیل شوند که نتیجه این عمل تولید مولکولهای جدید یعنی محصول است.

 
سرعت هر واکنش شیمیایی متناسب است با تعداد برخورد مولکولها در واحد زمان. اگر تمام برخوردهای مولکولها منجر به انجام واکنش شود، مدت زمان انجام واکنشها باید خیلی کمتر باشد. طبق محاسبات مختلف از هر ۱۰۱۴ برخورد ، فقط یک برخورد به واکنش منجر می‌شود. یعنی برخوردهایی موجب انجام واکنش می‌شوند که انرژی حاصل از برخورد برابر یا بیشتر از انرژی فعالسازی باشد.

 

● انرژی فعالسازی

 
حداقل انرژی لازم که بایستی واکنش‌دهنده‌ها بگیرند تا بتوانند وارد واکنش شوند. انرژی فعالسازی برای تمام واکنش‌های شیمیایی چه گرماگیر و چه گرماده وجود دارد و معمولا از انرژی برخورد میان مولکولها تامین می‌شود.

[ پنجشنبه سی ام اردیبهشت 1389 ] [ 17:25 ] [ ]
قوانین الکترولیز فارادی

مقدمه


الکترولیز یا برقکافت ، کاربردی از علم شیمی فیزیک است که مبنای آن ، اکسیداسیون و احیا و پتانسیلهای اکسید و احیای عناصر شیمیایی است و در آزمایشگاه و صنعت کاربردهای فراوانی دارد. قوانین حاکم بر الکترولیز ، قوانین فارادی است که با این قوانین آشنا می‌شویم.


قانون اول فارادی در الکترولیز


• وقتی که جریان الکتریکی از محلولهایی مثل اسید سولفوریک رقیق می‌گذرد، آب به اجزایش یعنی هیدروژن و اکسیژن تجزیه می‌شود. آنها در اطراف صفحات متصل به قطبهای منفی و مثبت باتری آزاد می‌شوند. محلولهایی از این نوع که با گذشتن جریان از آنها بطور شیمیائی تجزیه می‌شوند، الکترولیت نامیده می‌شوند و فرایند تجزیه ماده بر اثر جریان الکتریکی به الکترولیز معروف است و رساناهایی را که در الکترولیت فرو می‌برند و جریان را به آن می‌رسانند، الکترود نام نهاده‌اند. الکترود مثبت به آند و الکترود منفی به کاتد معروف است.


• محصولات تجزیه الکترولیت مثل اکسیژن و هیدروژن تا وقتی که جریان عبور می‌کند، بر الکترودها می‌نشینند. جرم ماده ای را که در الکترود آزاد می‌شود، می‌توان اندازه گرفت. اگر محلول چنان انتخاب شود که ماده آزاد شده بر الکترود رسوب کند، این جرم را می‌توان به‌آسانی اندازه گرفت. مثلا اگر از محلول سلفات مس جریان بگذرد، مس بر کاتد رسوب می‌کند. این پدیده را در صورتیکه مثلا کاتد از کربن ساخته شده باشد، می‌توان به‌آسانی مشاهده کرد. لایه نازک مس بر سطح سیاه کربن بوضوح مشاهده می‌شود. با وزن کردن کاتد قبل و بعد از آزمایش می‌توان جرم فلز رسوب کرده را دقیقا معین کرد.


• اندازه‌گیری نشان می‌دهد که جرم ماده آزاد شده در هر الکترود ، به جریان الکتریکی و مدت الکترولیز بستگی دارد. با بستن مدار برای فواصل زمانی متفاوت می‌توان اطمینان یافت که جرم ماده آزاد شده با مدت زمان عبور جریان متناسب است. بنابراین ، جرم آزاد شده در الکترولیز هم با جریان الکتریکی و هم با مدت زمان انجام آزمایش متناسب است. پس به حاصلضرب آنها نیز وابستگی دارد. اما این حاصلضرب مساوی باری است که از الکترولیت گذشته است. در نتیجه جرم ماده آزاد شده در الکترود متناسب است با بار یا مقدار الکتریسته ای که از الکترولیت گذشته است. این قانون مهم را اولین بار ، "فارادی" وضع کرد و به قانون اول فارادی در الکترولیتها معروف است.

 

• اگر m جرم ماده رسوب کرده ، I جریان الکتریکی ، t زمان الکترولیز و q بار کلی باشد که در مدت زمان t از الکترولیت گذشته است. قانون اول فارادی به شکل زیر نوشته می‌شود: m=Kq=KIt که در آن ، K ضریب تناسب است. با فرض اینکه q=1 C (با کل یک کولن) باشد، در می‌یابیم که ضریب K مساوی جرم ماده آزاد شده توسط بار 1C ، یا به عبارت دیگر جرم ماده آزاد شده توسط جریان 1A درمدت 1S زمان است.


• بررسی‌های فارادی نشان داد که هر ماده مقدار K معینی دارد که مشخصه آن ماده است. مثلا در الکترولیز نیترات نقره ، بار 1C مقدار نقره 1.1180mg را آزاد می‌کند. همین مقدار نقره توسط 1C در الکترولیز هر نمک نقره مثلا کلرور نقره ومانند آن آزاد می‌شود. جرم ماده آزاد شده در الکترولیز نمک هر فلز دیگری با این مقدار ، تفاوت خواهد داشت. کمیت K ، هم‌ارز الکتروشیمیایی ماده داده نامیده می‌شود.


تعریف هم‌ارز الکتروشمیایی
هم‌ارز الکتروشیمیایی یک جسم ، عبارت است از جرم آزاد شده از این جسم در الکترولیز ، وقتی که یک کولن الکتریسته از محلول بگذرد.


قانون دوم فارادی
با توجه به اینکه هم‌ارز الکتروشیمیایی مواد مختلف بسیار متفاوت است، چه خواصی از جسم هم‌ارز الکتروشیمیایی آنرا تعیین می‌کنند؟ پاسخ این سوال در قانون مهم دیگری که آن را نیز فارادی با آزمایش به‌اثبات رساند، نهفته است.


هم‌ارز الکتروشیمیایی اجسام مختلف با جرم مولی آنها متناسب است و با ظرفیت شیمیایی آنها نسبت عکس دارد. ظرفیت شیمیایی هر اتمی را با تعداد اتم‌های هیدروژن تعریف می‌کنند که می‌توانند با آن ، ترکیب یا جانشین آن شوند.
مثال عددی برای توضیح قانون دوم


جرم مولی نقره 0.1079Kg/mol و ظرفیت آن مساوی یک است. جرم مولی روی 0.0651Kg/mol و ظرفیت آن دو است. بنابراین ، مطابق قانون دوم فارادی ، نسبت هم‌ارز الکتروشیمیائی نقره و روی برابر است با: 3.30=(0.0654/2)/(0.1079/1)


 • اگر هم‌ارز الکتروشیمیایی یک جسم را با [K[Kg/C ، جرم مولی آن را با [M[Kg/mol و ظرفیت آنرا با ( 1,2,3,...) n نمایش دهیم، می‌توان قانون دوم فارادی را به این شکل (K=(1/F)(M/n نوشت. در اینجا F ضریب تناسب و ثابب عمومی است، یعنی برای تمام اجسام مقدار یکسان دارد. کمیت F به ثابت فارادی معروف است. مقدار آن که با آزمایش معین شده برابر است با:
F=96484C/mol


• برخی عناصر در ترکیبات مختلف ، ظرفیتهای متفاوتی از خود نشان می‌دهند، مانند مس که یک فلز دو ظرفیتی است. بنابراین مس ، دو هم‌ارز الکتروشیمیایی دارد. نسبت جرم مولی هر جسم به (ظرفیت شیمیایی آن ، هم‌ارز شیمیایی آن جسم نامیده می‌شود. این نسبت ، مبین جرم جسمی است که برای جایگزین یک مول هیدروژن در ترکیبات لازم است.


• برای اجسام تک‌ظرفیتی هم‌ارز الکتروشیمیایی اجسام با هم‌ارز شیمیایی آنها متناسب است. بنابراین دو قانون فارادی را در هم ادغام می‌کنیم که در آن ، جرم ماده آزاد شده بر اثر عبور مقدار الکتریسته q از الکترولیت است. این فرمول m=(1/F)(M/n) q مفهوم فیزیکی ساده ای دارد. ثابت فارادی F ، به عدد ، مساوی با باری (q) است که باید از هر الکترولیتی بگذرد تا مقدار جسم آزاد شده در الکترودها با هم‌ارز شیمیایی آن جسم (M/n) برابر باشد.

 

[ چهارشنبه بیست و نهم اردیبهشت 1389 ] [ 9:26 ] [ ]
فولرن هادر سال ۱۹۸۵ رابرت اف ،هارولد دبلیو . کورتو و ریچارد ای، اسمالی ، شکل جدیدی از کربن را کشف کردند که امروز به نام توپ باکی بال معروف است . این کشف نشان داد که ۶۰ ، ۷۰ یا تعداد بیشتری اتم کربن میتوانند با هم بصورت خوشه تجمع کنند و مولکولی قفس مانند بسازند .
فولرنها به شدت الکترون خواه هستند و به آسانی با هسته دوستها واکنش میدهند ، از واکنشهای آنهای میتوان :


۱- واکنش افزایشی : تشکیل برون وجهی با افزایش هسته دوستها یا رادیکالها ، حلقه زایی ، و ایجاد کمپلکس با فلزات واسطه .
۲- واکنشهای انتقال الکترون : کاهش شیمیایی فولرنها به راحتی بوسیله واکنش با فلزهای قلیایی و قلیایی خاکی الکتروپوزیتیو یا مولکولهای آلی اکترون دهنده امکان پذیر است،
۳-تشکیل ناجور فولرنها : جانشین کردن اتمهایی مانند نیتروژن یا بور به جای اتم کربن در اسکلت فولرن
۴-واکنشهای باز شدن حلقه : تولید یک حفره در اسکلت با شکستن تعداد مشخصی از پیوندها
۵-تشکیل درون وجهیها :وارد کردن و به تله انداختن اتمها در داخل قفس کروی شکل


نیمرسانایی با مقاومت الکتریکی بسیار بالاست ، اما با وارد کردن فلزات قلیایی ، قلیایی خاکی یا گونه های الکترون دهنده دیگر درون ، انتقال بار حاصل ، مقاومت الکتریکی را به شدت کاهش میدهد که در برخی موارد میتواند منجر به رسانایی فلزی شود .


به این مواد متافولرنها گفته میشود .


نانو لوله های کربنی به دلیل داشتن قطر بسیار کوچک در حدود ۰.۷ نانومتر نخستین نمونه از استوانه های توخالی معروف به سیمهای کوانتومی هستند ، اینها هم به صورت فولرنهای تک لایه هم به صورت فولرنهای چند لایه تو در تو قابل تهیه اند ، در طول دهه گذشته دانشمندان به این نتیجه رسیده اند که نانولوله های کربنی قادرند الکتریسیته را به دو صورت هدایت کنند ، با مقاومت کم ، مانند فلز ، و با مقاومت متغیر ، مانند نیم رسانا .اکنون پژوهشگران دانشگاه برکلی این نظریه را مطرح کرده اند که نانو لوله ها میتوانند در شرایط مناسب ابر رسانا هم باشند ، بلاخره در سال ۱۹۹۹ دانشمندان نانو لوله هایی بسیار کوچک به قطر کمتر از نیم نانومتر و طول ۱۰۰۰ آنگستروم {۳۰۰۰ بار کوتاهتر از دیگر نانولوله ها، جهت اجتناب از نقصهای ساختاری }تولید کردند که پایینتر از ۲۰ درجه کلوین ابر رسانا میشوند.

[ سه شنبه بیست و هشتم اردیبهشت 1389 ] [ 11:27 ] [ ]
نور از دیدگاه CPH

مقاله فیزیک - نور

مقاله فیزیک - نور

مقاله فیزیک - نور

مقاله فیزیک - نور

مقاله فیزیک - نور

 

منبع : www.academist.ir - آکادمیست

[ دوشنبه بیست و هفتم اردیبهشت 1389 ] [ 10:29 ] [ ]
نورشناسی کوانتومی و کنترل فیزیک کوانتوم نورشناسی کوانتومی برای همه ی شاخه های علم کوانتوم بنیادی است چراکه با فعل و انفعالات بین نور و ماده در تراز اصلی سروکار دارد که به طور نهایی مشخص کننده ی این واقعیت است که اتمها و مولکولها چگونه رفتار می کنند .
بنا بر نظر پروفسور جورج اشمیدمایر (Jörg Schmiedmayer  ) - مدیر کنفرانش ESF- یک برداشت کامل از نورشناسی کوانتومی در وسیع ترین مفهومش قدرت آن برای هدایت به سوی تکنولوژیهای (کوانتومی) جدید است که به توصیف قرن 21 کمک خواهد کرد.
دانش کوانتوم نقش بسزایی برای منقلب کردن دنیای محاسبات و ارتباطات، توانا سازی عظیم توسعه در قدرت پردازش، تراکم ذخیره ی داده ها و انتقال داده ها دارد.
هرچند دستیابی به بیشترین کاربردهای آن هنوز سالهای زیادی از ما فاصله دارد، پیشرفتهای عظیم برای پروژه هایی در سطح آزمایشگاه که مفهوم را در یک مقیاس کوچک نشان می دهند، پایه گذاری شده اند.


جنبه ی خشنود کننده ی کنفرانس بنا بر نظر اشمیدمایر، استاندارد به طور استثنایی بالای همکاری ایجاد شده بین محققان جوان و شور حاصل توسط آنها بود؛ محققان جوانی که به ارمغان آورندگان الگوهایی نو برای این رشته ی علمی در طول دو دهه ی مهمی که در پیش داریم خواهند بود.
اشمیدمایر گفت: " موضوع داغ جلسه زمانی بود که عمدتا محققان جوان دستاوردهایشان را ارائه می کردند که این موضوع قطعا نقاط روشنی در طول مدت زمان کنفرانس بود."
" در میان همه ی اینها علم بسیار نوینی که مورد بحث قرار گرفت علمی بود که تا قبل از سه سال پیش رویاپردازی بیش نبود (علم کوانتوم). خیلی از دستاوردها در جایی دیگر قبل از این هنوز ارائه نشده بودند."


پیشرفت مهمی که برای مثال در ارتباطات کوانتومی مورد ملاحظه قرار گرفت وعده قادرساختن ارسال کاملا ایمن اطلاعات به شبکه های ارتباطات را می دهد، تغییر اطلاعات در چنین شیوه ای که کاملا برای هرکسی به جز دریافت کننده نامعلوم است درصورتیکه شخص کلید محرمانه ای که فقط برای هردوطرف شناخته شده است را داشته باشد آسان است. مشکلی که در فرستادن به وجود میآید آن است که کلید بین دو طرف در صورتی قابل اطمینان است که در طی این فرایند استراق سمعی صورت نگرفته باشد.
رمزنگاری کوانتومی به طور منحصربه فردی ارائه ی طرز کار کاملا اطمینان بخشی را میسر ساخته است. برای مثال به وسیله ی بهره برداری ازدرهم پیچیده شدن کوانتومی، وضعیتی که در آن حالت دو ذره به صورت کوانتومی به هم بسته مشود تا اینکه هر گونه تلاش برای جداکردن یکی از ذرات منجر به تغییری آشکار در ذره ی دیگر می شود.
کاربرد این موضوع در ارتباطات دو طرف را قادر می کند تا بدانند که هیچ کس دیگری این کلید را قطع نکرده است و این آگاهی دو طرف می تواند بعدا به صورت اطمینان بخشی برای تغییر اطلاعات واقعی  برای منتقل شدن مورد استفاده قرار بگیرد.


توزیع کلید کوانتومی  (QKD ) پیش از این در آزمایشگاه نمایش داده می شد اما تنها از فاصله های بالای 150 کیلومتری به نمایش گذاشته میشد چون در مقیاس های بزرگتر تارهای نوری یا هوای موجود در درفضای آزاد، برای انتقال سیگنالهای نوری برای پایین بردن و یا یابالابردن فوتونهای منفرد که سپس کیفیت کوانتومی خودشان را از دست می دهند استفاده می شد.
در کنفرانس، گامهای عمده ی آینده برای تحقق بخشی به یک تکرار کننده کوانتومی برای اتصال دقیق به کانالهای ارتباطی ارائه شد که اجازه می داد سرانجام ارتباطات کوانتومی خیلی دوربردتر (شاید جهانی) توسعه پیدا کنند.


همچنین دانش کوانتوم و در نتیجه ی آن شیوه های نورشناسی کوانتومی توانایی زیادی برای وعده ی ایجاد کامپیوترهای کوانتومی دارند که این کامپیوتر های کوانتومی قدرت پردازشی بیشتر از آنچه که فکرش را بکنید خواهند داشت. کنفرانس ازمایشات جدید به وسیله ی مدارات کوانتومی ابررسانایی را مورد بررسی قرار داد که می توانند در آینده برای مدارات مجتمع جدید شامل اثرات کوانتومی مورد استفاده قرار بگیرند، پیشرفت جالب توجهی که قلب نورشناسی کوانتومی را به میان دستگاههای حالت جامد و مدارات الکترونیکی (کوانتومی) می آورد .
به گفته ی اشمیدمایر، همچنین در کنفرانس علاقه ی زیادی نسبت به درستی بالای وسایل ورودی کوانتومی برای به دام اندازی یونها وجود داشت. به دام اندازهای یونی اولین ابزارهایی بودند که در آنها الگوهای پردازش کوانتومی پیشنهاد و انجام شده بود. اکنون با درستی بالای عملکرد های کوانتومی به دام اندازهای یونی طرح ایده آلی برای ساخت و تحقیق اجزای منطقی کوانتومی در کامپیوترهای دارای معیار کوانتومی آینده هستند . نظر مورد نظر اینست که یونها (اتم ها و مولکولهایی که الکترونها را از بیرونیترین لایه های خودشان از دست داده و یا بدست آورده اند) به شکل آزاد در یک میدان مغناطیسی معلق هستند تا اینکه ترازهای انرژی آنها بتواند به طور دقیق دستکاری شده و به سطح یک کوانتوم منفرد پایین بیاید. این موضوع می تواند به طور بالقوه برای ذخیره و انتقال اطلاعات در یک کامپیوتر کوانتومی مورد بهره برداری قرار گیرد.


سومین موضوع مربوط به شبیه سازی های کوانتومی بود اینجا برای ساخت  مدلهای ازمایشی خوب کنترل شده ی  مفاهیم نظری ابزارهای نورشناسی کوانتومی استفاده شدند که به خودی خود خیلی مشکل است به طور کامل بوسیله هریک  از شیوه های تحلیلی یا شبیه سازی در کامپیوترهای کوانتومی حل بشود .
یک چنین شبیه سازی های کوانتومی وعده ی تیزبینی نسبت به بعضی از مسائل برجسته بزرگ در فیزیک حالت جامد را به ما می دهد؛ مانند مکانیزم بعد از دمای بالای ابر رسانایی یا مسائل جاذبه ی کوانتومی. کنفرانس چگونگی ساخت فعل و انفعالات ویژه نیازمند ساختن یک چنین روشهای شبیه سازی در آزمایشگاه یا اینکه چگونه کوانتوم و حرکات اجسام آن می توانند در سیستمهایی با ابعاد کم بررسی شوند را مورد بررسی قرار داد. 


تمرکز چهارم کنفرانس بر روی تکنولوژی های کوانتومی و اندازه گیری های دقیق بود. پیشرفت قابل توجه گزارش شده در تنظیم نوسانگرهای مکانیکی انها را به روش ترتیب کوانتومی نزدیک می کرد و وعده ی به کار بردن کوانتوم در مکانیک یا اشیای نانو ریز را در اینده ی بسیار نزدیک می دهد .
علاوه براین علاقه ی فراوان به آزمایشی که صحت بالای نوسانات Bloch بوسیله ی تنظیم فعل و انفعالات اتم - اتم را نشان می داد، وجود داشت. این امکان آشکار شده برای سنجش مافوق دقیق کوانتومی بوسیله ی   BEC جنبه ای است که گمان می رفت بدلیل ماهیت غیر خطی این سیستمها خیلی مشکل صورت بگیرد.
نتایج مهیج و مفاهیم ارائه شده و بحث شده ی بسیار زیادی وجود داشت. بنا بر نظر اشمیدمایر کنفرانس با گرد هم آوردن افراد در رشته های گوناگون کوانتوم و آغاز پذیرش مکانیک کوانتومی در دنیای مواد حالت جامد به اهدافش واقعیت بخشید.

[ دوشنبه بیست و هفتم اردیبهشت 1389 ] [ 10:27 ] [ ]
مواد سازنده عدسی عینک

امروزه در بیشتر کشورهای پیشرفته چیزی حدود ۹۵ در صد عدسیهای عینک از مواد پلاستیکی ساخته می شود پلاستیک بدلیل سبکی و ایمنی ذاتی آن بطور کلی جایگزین شیشه شده و عنوان نخستین انتخاب برای مواد عدسیهای عینک را بخود اختصاص داده است مقدار اندکی استفاده از شیشه بطور کلی مربوط به شیشه های دارای ضریب انکساری بالا (بالاتر از ۱.۸)و همچنین عدسیهای فتوکرومیک با ویژگیهای خاص مانند شیشه های CPF شرکت corning می گردد


اطلاعاتی که بطور معمول در مورد مواد عدسیهای عینک منتشر می شود عبارتند از :


۱-ضریب انکسار
۲- دانسیته
۳-عدد Abbe
۴- UV cut off point


اگر ضریب انکسار ماده ای مشخص باشد دو مورد دیگر از ویژگیهای مواد سازنده عینک مانند عامل تغییر انحناء( CVF) و انعکاس از سطح آن ماده را که با ρ نشان داده می شود را می توان بدست آورد
ضریب انکساری : ضریب انکساری نسبت سرعت یک طول موج مشخص نور در هوا به سرعت همان طول موج نور در محیط منکسر کننده نور می باشد.
در حال حاضر در بریتانیا و آمریکا ضریب انکساری بر اساس طول موج خط d هلیم ( با طول موج nm۵۸۷.۵۶)اندازه گیری می شود در حالیکه در قاره اروپا بر اساس خط eجیوه (با طول موج nm۵۴۶.۰۷)اندازه گیری می شود
توجه کنید که میزان ضریب انکساری با خط e جیوه بیشتر از d هلیم می باشد بنابراین وقتی که میزان ضریب انکسارماده ای بر حسب خط e جیوه داده می شود بنظر می رسد که آن ماده ضریب انکساری بیشتری دارد.


ممکن است گاهی وقتها لازم باشد تا بدانیم چه میزان تغییر در حجم و ضخامت یک عدسی خاص وقتی که به جای شیشه استاندارد کرون از ماده دیگری استفاده شود روی خواهد داد این اطلاعات را از CVF می توان بدست آورد CVFامکان مقایسه مستقیم ضخامت عدسیهای ساخته شده از مواد مختلف با شیشه استاندارد کرون را فراهم می آوردبرای مثال ماده ای با ضریب انکسار ۱.۷۰ دارای CVF=۰.۷۵ می باشد که این بدین مفهوم می باشد که در صورت جایگزینی این ماده بجای شیشه کرون کاهشی معادل ۲۵%در ضخامت عدسی روی خواهد داد.
یکی از استفاده های مهم CVF تبدیل قدرت عدسی که قرار است ساخته شود به معادل آن از جنس کرون است و این کار بسادگی با ضرب قدرت عدسی در CVFآن ماده امکان پذیر می باشد برای مثال فرض کنید ما می خواهیم یک عدسی ۱۰.۰۰-دیوپتر را از ماده ای به ضریب انکسار ۱.۷۰ داشته باشیم معادل همین عدسی از جنس شیشه کرون ازضرب ۱۰.۰۰ × ۰.۷۵ که مساوی ۷.۵۰-می شود بدست می آید به عبارت دیگر استفاده از ماده ای به ضریب شکست ۱.۷۰ عدسی ای به قدرت ۱۰.۰۰-ایجاد می کند که از نظر سایر مشخصات شبیه یک عدسی به قدرت ۷.۵۰- از جنس کرون می باشد.

 

ماده ای به ضریب شکست ۱.۶۰ دارای CVF=۰.۸۷ می باشد . بنابراین ما انتظار داریم که در صورت ساختن عدسی ای از این ماده ۱۳ %کاهش در ضخامت داشته باشیم و یک عدسی ۱۰.۰۰- دیوپتر از این ماده مشابه یک عدسی به قدرت ۸.۷۵-از شیشه کرون می باشد CVFیک ماده در واقع نسبت انکسار شیشه کرون به انکسار توسط آن ماده خاص می باشد ( n-۱ ) /۰.۵۲۳ و در واقع انحناءبدست آمده برای آن قدرت خاص از جنس شیشه کرون را با انحناءشیشه همان قدرت وقتی که از جنس ماده مورد نظر ساخته شود را با هم مقایسه می کند

عدسیهای ساخته شده از مواد پلاستیکی با CR۳۹ مقایسه می گردند
یک استفاده عملی دیگر CVF تعیین میزان تقریبی ضریب انکساری یک عدسی ناشناخته است که بعدا در باره آن بحث خواهیم کرد.


دانسیته:


دانسیته یک ماده مشخص کننده میزان سنگینی آن ماده می باشد و مقایسه دانسیته موادمختلف می تواند تغییرات احتمالی را که ممکن است در اثر استفاده از یک ماده خاص در ساخت عدسی مورد نظر ما روی دهد را بیان می کند دانسیته معمولا بر حسب گرم وزن یک سانتی متر مکعب از هر ماده بیان می گردد دانسیته عدسیهایی که از مواد دارای ضریب انکساری بالا ساخته می شوند بیشتر از دانسیته شیشه کرون است اما برای مقایسه وزن عدسیهای ساخته شده از مواد مختلف لازم است تا حجم را نیز در نظر بگیریم برای مثال اگر دانسیته ماده ای ۳.۰ ذکر شود این بدین مفهوم است که این ماده ۲۰%سنگین تر از شیشه کرون است


بطور کلی در صورتی که کاهش ایجاد شده در حجم (که از رویCVF مشخص می گردد)بیشتر از افزایش دانسیته باشد عدسی نهایی ساخته شده از شیشه کرون سنگین تر نخواهد بود برای مثال یک شیشه CVFباضریب شکست ۱.۸۰۲ حدود ۰.۶۳ است که نشاندهنده این است که ۳۵%کاهش حجم در مقایسه با شیشه کرون وجود خواهد داشت اما دانسیته این ماده ۳.۷ است که به مفهوم این است که این ماده ۴۸%سنگین تر از شیشه کرون در واحد حجم می باشد ما می توانیم پیش بینی کنیم که شیشه دارای ضریب انکسار ۱.۸۰۲ چیزی حدود ۱۵% سنگین تر از معادل آن که از شیشه کرون ساخته شده است می باشد.

 

 

[ یکشنبه بیست و ششم اردیبهشت 1389 ] [ 9:28 ] [ ]
نقش میدان مغناطیسى در حفاظت از کره زمین

میدان مغناطیسى زمین همانند پوست پیاز کره خاکى ما را در برگرفته است. توفان هاى خورشیدى آن را مورد حمله قرار داده و موجب بروز توفان هاى الکتریکى در آن مى گردند. این توفان ها نیز متعاقباً بر روى سیستم هاى الکتریکى زمین اثر مى گذارد. اگر چه میدان مغناطیسى زمین کره خاکى ما را از توفان هاى خورشیدى و تشعشعات فضایى حفظ مى کند اما متاسفانه این میدان مغناطیسى به تدریج در حال ضعیف ترشدن بوده و عواقب حاصل از آن مایه نگرانى کارشناسان امر است.

چندى پیش رسانه هاى گروهى از وقوع انفجارات شدید در خورشید (در منظومه شمسى) خبر داده و متذکر شدند در اثر این انفجارات، تشعشعات خطرناکى وارد جو زمین شده و ذرات الکتریکى باردار آن براى همگان مضر خواهد بود. در این گزارش ها از قطع ارتباطات رادیویى در سراسر جهان، از کار افتادن ماهواره ها و سیستم هاى برق رسانى سخن مى رفت. این نگرانى ها همه بحق بودند. پس از انفجارهاى شدید خورشیدى که 14 سال پیش صورت گرفتند ابرى از ذرات باردار پرانرژى ( این ذرات باردار در زبان فیزیکدانان، پلاسما نامیده مى شود) با قدرتى 1700 بار بیشتر از روزهاى معمولى، به سوى سیاره ما وزیدن گرفت. در آن زمان دانشمندان از این بیم داشتند که اگر توفان حاصل از این ذرات پر انرژى به میدان مغناطیسى زمین برسند، در میدان مغناطیسى، شدت جریان الکتریکى آنچنان زیاد خواهد بود که تقریباً تمامى فیوزهاى سیستم هاى الکتریکى از کار خواهند افتاد. خوشبختانه این فاجعه عظیم به وقوع نپیوست. تنها برخى از فرکانس هاى رادیویى دچار اشکال پخش شدند و کار بعضى از ماهواره ها به صورت موقت و از روى احتیاط متوقف شد.

 

کارشناسان به این نتیجه رسیدند که میدان مغناطیسى زمین، سپر دفاعى نامریى ما در برابر توفان هاى خورشیدى و تشعشعات فضایى بوده است. با این وجود نقش پروتون ها و ذرات آلفا در این تشعشعات و همچنین نقش میدان مغناطیسى زمین هنوز هم معماهاى بسیارى را در خود نهفته دارند.

اما اصولاً چرا کره زمین از دو قطب مغناطیسى برخوردار است؟ چه چیزى باعث مى شود که زمین همانند یک میله مغناطیسى عظیم، آن طور که همه ما آ ن را از کلاس هاى درس فیزیک مى شناسیم، عمل کند؟ چرا عقربه یک قطب نما همیشه جهت شمال و جنوب مغناطیسى را بر روى زمین نشان مى دهد؟ (این مسئله هزاران سال پیش توسط چینى ها کشف شد.)

شاید بد نباشد توضیح دهیم که حتى تا قرن شانزدهم میلادى هم بسیارى از مردم معتقد بودند که یک کوه عظیم مغناطیسى در شمال زمین وجود دارد.

 

متخصصان رشته هاى فیزیک و زمین شناسى تنها چند دهه پیش بود که تئورى دیگرى را ارائه کردند و این تئورى تازه، چهار سال پیش در انستیتوى تحقیقاتى شهر کارلسروهه مورد تائید قرار گرفت. طبق این تئورى تقریباً 95 درصد از میدان مغناطیسى زمین از طریق یک ماشین دینام یا در حقیقت ژنراتورى که با کمک اثر مغناطیسى، انرژى الکتریکى تولید مى کند، در ماده مذاب قشر بیرونى هسته زمین که کلاً از آهن تشکیل شده است تولید مى شود. در این قشر، جریان هایى به وجود مى آیند که بر اثر چرخش کره زمین شکلى مارپیچ به خود مى گیرند. آزمایش هاى انجام گرفته نشانگر آنند که این جریان هاى مارپیچ، واقعاً یک میدان مغناطیسى را به وجود مى آورند. میدان مغناطیسى درونى زمین بر جریان هاى الکتریکى خارجى در یونوسفر جو زمین اثر گذاشته و به این ترتیب در برابر توفان هاى خورشیدى و تشعشعات زیان آور ذرات الکتریکى نقش حفاظ را بازى مى کند.

 

البته این میدان مغناطیسى همانند میدان مغناطیسى زمین که دائماً ضعیف تر مى شود، از یک ثبات دائمى برخوردار نیست. علاوه براین، بررسى سنگ هاى کره زمین نشان مى دهد که پس از بروز یک چنین ضعفى در میدان مغناطیسى زمین، تقریباً هر 750 هزار سال یک بار، محل قطب هاى شمال و جنوب مغناطیسى تغییر مى کند. اما براساس محاسبات کنونى این تغییر محل قطب هاى مغناطیسى زمین حدوداً 500 سال دیگر انجام خواهد گرفت. اینکه علت این پدیده چیست و آیا به این خاطر، آن طور که برخى از محققان معتقدند، آب وهواى کره زمین تغییر خواهد کرد یا اینکه اصولاً بقاى حیات بر روى کره خاکى ما با خطر مواجه مى شود، هنوز مشخص نیست.

 

 

منبع : www.hupaa.com - هوپا

 

[ شنبه بیست و پنجم اردیبهشت 1389 ] [ 11:30 ] [ ]
شاتل فضایی

شاتلها در اصل هوا - فضاپیماهایی هستند که وظایف گوناگونی دارند. ولی مهمترین آنها حمل ماهواره‌ها و قرار دادن آنها بر روی مدارهای خاص زمین است.


مقدمه

 

در بین تمامی وسایلی که به فضا پرتاب شده‌اند نام یکی از آنها بیشتر از بقیه به گوش ما خورده است، شاتل فضایی (Shuttle). طراحی و ساخت یک هو - افضاپیما کار بسیار مشکلی است و با طراحی و ساخت هواپیما از زمین تا آسمان فرق دارد. طراحی هواپیما در یک جو صورت می‌گیرد و دیگر مهندسان دغدغه رقیق یا غلیظ شدن هوا را ندارند و احتیاجی به محاسبه نیروهای آیرودینامیکی وارد بر هواپیما در ارتفاعات مختلف نیست، در صورتی که در هوا - فضاپیماها در بسیاری از نقاط چگالی هوا بسیار کم است و نمی‌توان از نیروهای بالابرنده (Lift) به خوبی بهره برداری کرد. یکی دیگر از تفاوتهای آنها ، گذر از جو زمین است.

هواپیماها تا ارتفاع محدودی اوج می‌گیرند، در صورتی که هوا - فضاپیماها باید از جو زمین نیز بگذرند. گذر از جو زمین تحمل حرارتی بسیار بالا می‌خواهد، زیرا در آنجا هوا بسیار فشرده است و به همین خاطر است که دماغه بسیاری از هوا - فضاپیماها از جنس آلیاژهای سرامیکی خاص هستند تا تاب تحمل حرارتهای بسیار بالا را داشته باشد. زیرا در غیر این صورت بدنه هواپیما ذوب می‌شود.

 

ساخت یک شاتل نیز تمامی این دغدغه‌ها را دارد. ما قصد داریم در این مقاله شما را با چگونگی ساخت و آزمایشات اولین شاتل فضایی آشنا کنیم. شاتل فضایی آمریکا که اولین بار در سال 1981 میلادی پرتاپ شد، اولین سفینه قابل استفاده مجدد جهان بود. از سه بخش آن ، مدار پیما ، موشکهای تقویت کننده و مخزن خارجی سوخت، فقط مخزن سوخت آن می‌باشد که بعد از هر مأموریت قابل استفاده نیست. کاشیهای مخصوص مقاوم در برابر گرما مانع از سوختن مدار پیما به هنگام بازگشت به جو زمین می‌شوند. بازوی قابل کنترل از راه دور تعبیه شده در مخزن محموله مدار پیما می‌تواند ماهواره‌ها را در فضا قرار دهد و همچون سکوی ثابت برای کار فضانوردان عمل می‌کنند.

 مشخصات شاتل فضایی

مدار پیماها در ارتفاع 185 تا 1100

   سازه‌ قدرتمند مدارپیما در ارتفاع 185 تا 1100 کیلومتری (115 تا 610) پرواز می‌کنند و اجزای قطعات آن شامل: کاشیهای ضد حرارت ، دریچه ورود خدمه ، کابین پرواز و اتاقکهای خدمه ، دریچه ایمنی بال دلتا شکل، درپوش مخزن محصول دریچه بال ، سیستم مانور در مدار ، موتور اصلی سکان و کاهنده سرعت می‌باشد.


آزمایشگاه فضایی


آزمایشگاه فضایی آزمایشگاه مخصوصی است که درون مخزن محموله مدارپیما جای می‌گیرد تا با ایجاد فضای اضافی ، دانشمندان بتوانند در فضا آزمایش کنند. این آزمایشگاه بنا به نوع آزمایشهای هر سفر مجهز می‌شود، آزمایشگاه فضایی همچنین بخشهای رو بازی دارد که برای مطالعه فضا و زمین هستند. این آزمایشگاه متراکم از طریق مجرای هوابند به مدارپیما متصل می‌شود. تمامی مدارپیماها نامگذاری شده‌اند، اولین آنها به نام انترپرایز از نام سفینه فضایی مجموعه تلویزیونی استارترک اقتباس شد. انترپرلیز برای مقاصد آزمایشگاهی ساخته شده بود، ولی هیچگاه به مدار نرفت. هر چند که چندین بار در بالای یک فروند بوئینگ 747 پرواز کرد، در سال 1977 انترپرایز از ارتفاع 6700 متری (22هزار پایی) رها شد و سالم به زمین نشست. ناوگان کنونی 4 مدار پیما دارد: کلمبیا ، دیسکاوری ، آتلانتیک و اندور.


شاتل اینترپرایز


اینترپرایز (Enterprise) اولین شاتلی است که ایالات متحده آمریکا ساخت. در ابتدا به مناسبت دویستمین سالگرد تصویب قانون اساسی آمریکا قرار بود اسم آن را قانون اساسی (Constitution) بگذارند. اما بعد از مدتی با اعتراضات بسیاری روبرو شد بخصوص به دلیل جو خاصی که یکی از برنامه‌های تلویزیونی آمریکا به نام داستان علم در بین مردم درست کرده بود. افراد و کارکنان این برنامه طبق نامه‌ای سرگشاده به کاخ سفید ، تقاضای تغییر نام این شاتل را از قانون اساسی به اینترپرایز کردند و کاخ سفید نیز برای کاستن از کشمکشها و مسایل حاشیه‌ای دیگر ، قبول کرد که اولین شاتل فضایی آمریکا با نام اینترپرایز شناخته شود.

قرارداد ساخت آن در ۲۶ جولای سال ۱۹۷۲ امضا شد و تنها بعد از دو سال طراحیها تمام و اولین قدم برای ساخت کابین و جای خدمه آن شروع شد. در ۲۶ آگوست همان سال کار راه اندازی و ساخت بدنه اصلی نیز شروع شد. از حساسترین قسمتهای یک شاتل ، بالها و دم آن است که کار طراحی بال را به شرکت با تجربه (Grumman) واگذار کردند. شرکت گرومن سابقه‌ای طولانی در صنعت هوافضای آمریکا دارد و هم اکنون هواپیمایی چون بمب افکن B-2 را طراحی کرده است.

ساخت بالها در ۲۳ مه سال ۱۹۱۵ به پایان رسید و بالها را به پالمدیل (Palmdale) فرستادند. ساخت اینترپرایز در پایگاه هوایی ۴۲ (Rockwell) در پالمدیل در ایالت کالیفرنیا پیگیری می‌شد. در ۱۲ مارس ۱۹۷۵ کار ساخت شاتل کامل شد و سرانجام در ۱۷ سپتامبر ۱۹۷۶ از پایگاه پالمدیل خارج شد و در ۳۱ ژانویه ۱۹۷۷ از پالمدیل به ادواردز رفت. شاتل اینترپرایز در ناسا (NASA) با مشخصه OV-101 شناخته می‌شود. در پایگاه ادواردز در مرکز تحقیقات پروازی درایدن (Dryden) شروع به امتحان دادن و انجام آزمایشات و تستهای گوناگون چون فرود و برخاست (Takeoff and Landing) را انجام دهند. برنامه آزمایشی ALT قرار شد به مدت ۱۹ ماه به طول انجامد. ALT شامل آزمایشاتی چون قسمتهای دینامیکی و استاتیکی و پایداریهای فرود و برخاست است.


الحاق شاتل آمریکا


در 29 ژوئن سال 1995 میلادی شاتل فضایی آتلانتیک 5 فضانورد آمریکایی و 2 کیهان نورد روسی را به مسیر برد. پیش از آن چندین فضانورد روسی در مسیر ساکن بودند، این اولین الحاق شاتل با مسیر بود. یک سیستم الحاق مخصوص در مخرن محموله آتلانتیک نصب شده بود. بعد از 5 روز این شاتل به همراه 6 آفریقایی و 2 روسی به زمین بازگشت و 2 خدمه تازه نفس را برای مسیر باقی گذاشت.


دیپلماسی فضایی


الحاق شاتل با مسیر راه برای همکاریهای فضایی بین المللی در آینده هموار می کند. الحاق شاتل به مسیر بیست سال پس از اولین ملاقات فضای آمریکاییها و روسها اتفاق افتاد. در سال 1975 میلادی یک سفینه آپولو به مدت 47 ساعت به یک سایوز ملحق شد. شاتل به بار انداز واحد کریستال ملحق شد و این واحد بخاطر حفظ ثبات از محل همیشگی‌اش برداشته شده و موقتا به بار انداز عقبی واحد الحاق چند جانبه رابطه متصل گردید.

 

فاجعه چلنجر


در 28 ژانویه سال 1986 میلادی میلیونها ببیننده تلویزیون در سراسر جهان با وحشت شاهد انفجار شاتل فضایی چلنجر در کمتر از 2 دقیقه بعد از پرتابش بودند. این شاتل کاملا منهدم شد و همه 7 خدمه آن کشته شدند. یکی از آن خدمه به نام کریشیامک آلیف معلمی بود که قصد داشت از فضا شاگردانش را تعلیم دهد. تحقیق درباره این فاجعه آشکار نمود که عایق میان 2 بخش موشکهای تقویت کننده جدا شده بود و باعث نشت گاز و احتراق سفینه شده بود. بعد از این حادثه برنامه فضایی شاتل به مدت سه سال متوقف شد تا ایمنی آن بهبود یابد.


نیروی رایانه شاتل


امروزه اکتشافات فضایی بدون استفاده از نیروی رایانه غیر ممکن است. رایانه‌ها قادرند فضا را هدایت کنند، سیستمهای بی شمار فضا را بررسی و صحت عملکرد آنها را اعلام کنند. مرکز هدایت زمینی را در جریان وضعیت فضا پیماها مشخص کرده ، آنها را هدایت کنند. در نخستین پروازهای فضایی به اندازه امروز رایانه‌ها استفاده نمی‌شد؛ در حقیقت رایانه‌هایی که آن روزها برای هدایت فضاپیمای ایلات متحده آمریکا یعنی آپولو مورد استفاده قرار می‌گرفتند و نیرویی به اندازه رایانه‌های شخصی امروزی ما داشتند. کاوشگرهایی که در فاصله‌های دور دست کره زمین در فضا پرواز می‌کنند، با خود رایانه‌هایی را حمل می‌کنند که برای هدایت دوربینها و اندازه گیریهای مختلف برنامه نویسی شده‌اند.

رایانه‌ها قادرند اطلاعاتی که از کاوشگرهای فضایی بصورت علائم ضعیف رادیویی دریافت می‌کنند را به اطلاعات لازم و قابل فهمی تبدیل کنند. دانشمندان نیز به نوبه خود این اطلاعات را مورد تجزیه و تحلیل قرار می‌دهند تا به نکات جدیدی در مورد اجرام آسمانی دست یابند. رایانه‌هایی که شاتل فضایی را هدایت می‌کنند جزء پیشرفته‌ترین رایانه‌ها محسوب می‌شوند.


چینی‌ها در فضا

 دودی که در پایین سمت راست

حدود ۳۱ سال است که از اولین راهپیمایی انسان توسط آرمسترانگ بر روی سطح کره ماه می‌گذرد و هم اکنون کشور چین مایل است دست به انجام چنین کاری بزند. این حرکت چینیها در فضا باعث ایجاد رعب و وحشت بسیار در مجامع آمریکایی شده است؛ زیرا آنان عادت دارند که تکنولوژیهای فضایی را در انحصار کشور خود ببینند. حتی یکی از سناتورهای آمریکایی در یک سخنرانی گفته است: شما می‌دانید چینیها مشتاقند بر روی ماه بروند، ولی ما نمی‌خواهیم آنها به ماه دست پیدا کنند. حال چه گنجی بر روی کره ماه دیده شده که آمریکاییها اینقدر نسبت به این موضوع حساسند، خدا می‌داند. در هر صورت تمامی کشورهای جهان در انتظار پرتاب شاتل فضایی چینی هستند و تمامی ما هم امیدواریم که سرنوشتی مانند شاتل کلمبیا برای آنها رخ ندهد، زیرا فضاپیمای چینی با سرنشین است.

پروژه ALT با تستهای زمینی شروع شد از جمله تست تاکسی (Taxi) هواپیمای بویینگ ۷۴۷ حامل شاتل اینترپرایز بود تا مشخص شود برای برخاست (Takeoff) آن چه مسافتی با چه سرعتی باید پیموده شود تا از زمین بلند شود. تمامی این قسمتها با شاتل بی سرنشین انجام می‌شد و قرار بود تا هنگامی که شاتل اینترپرایز قابل اطمینان شد دیگر با سرنشین پرواز کند. بعد از آن پنج پرواز محدود (Captive) توسط اینترپرایز انجام شد و در آن اکثر سیستمها آزمایش شد و این آزمایش موفقیت آمیز بود. در برخی از پروازهای آزمایشی معمولا دو فضانورد نیز از طرف ناسا در شاتل حضور داشتند. بعد از صرف چنین وقتی تازه تصمیم به پرواز آزاد (Free Flight) با شاتل اینترپرایز را گرفتند و به دنبال آن تستهای دیگری چون تست لرزش (Flutter Test) نیز از OV-101 به عمل آمد.

 

البته با تکنولوژی کنونی طراحی شاتلها بسیار کمتر وقت و هزینه می‌برد، به عنوان مثال شاتل فضایی آتلانتیس (Atlantis) با وزنی حدود ۱۷۱هزار پوند در مدت بسیار کمی طراحی و ساخته شد. در تمامی پروازهای محدود و سه پرواز اولیه دم مخروطی شکل از بدنه شاتل جدا شده بود تا کمترین مقدار نیروی مقاوم (Drag) و کمترین لرزش بوجود بیاید، ولی در آخرین پروازش که در برنامه ALT قرار است دم مخروطی شکلی دوباره به آن ملحق شود. این دم مخروطی توسط ۱۱ قفل الکترونیکی بر روی اینترپرایز نصب می‌شود.

 

OV-101 اولین شاتلی بود که توسط آمریکا ساخته شد و به همین خاطر آزمایشات بسیار زیادی در عرض چندین سال از آن به عمل آمد به گونه‌ای که به مراکز تحقیقاتی چون مرکز پرواز فضایی مارشال (Marshall) ، مرکز فضایی کندی (Kennedy) و ... برده شد تا بدون نقص ساخته شود. در ۱۰ آوریل ۱۹۷۹، OV-101 به مرکز فضایی کندی رفت تا با راکتهای سوخت جامد و یک منبع داخلی آزمایش شود. سرانجام در ۱۶ آگوست همان سال به مرکز تحقیقات درایدن برگشت و در ۳۰ اکتبر به زادگاهش یعنی پالمدیل رفت. بین ماههای مه و ژوئن سال ۱۹۸۳ اینترپرایز به پاریس رفت تا در نمایش هوایی شرکت کند و بعد از آن در ۱۸ نوامبر سال ۱۹۸۵ از مرکز فضایی کندی به فرودگاه دالز (Dulles) واقع در واشنگتن رفت و دیگر پرواز نکرد.

 

  در آنجا به موسسه اسمیتسونیان (Smithsonian) تحویل داده شد. شاتل اینترپرایز برای تست و آزمایش ساخته شده بود و هیچ گاه به مأموریتهای فضایی نرفت. اما بعد از آن با تجربه‌ای که آمریکاییها بدست آورده بودند شروع به ساخت شاتلهای متعددی چون شاتل کلمبیا کردند که اولین شاتلی بود که در مدار زمین قرار گرفت. کلمبیا در سال ۱۹۸۱ پروازش را انجام داد و بعد از آن چهار شاتل دیگر در عرض ده سال ساخته شدند که عبارتند از چلنجر (Challenger) که در سال ۱۹۸۲ ساخته ولی چهار سال بعد منهدم شد. سپس شاتل دیسکاوری (Discovery) در سال ۱۹۸۳ و بعد از آن شاتل آتلانتیس (Atlantis) در ۱۹۸۵ و سرانجام در سال ۱۹۹۱ شاتلی به نام ایندیورد (Endeavour) ساخته شد تا جایگزین شاتل منهدم شده چلنجر باشد.

 

 

[ پنجشنبه بیست و سوم اردیبهشت 1389 ] [ 12:31 ] [ ]
عدد اکسایش

مقاله علمی - عدد اکسایش

 

 

 

منبع : www.roshd.ir - رشد

[ سه شنبه بیست و یکم اردیبهشت 1389 ] [ 12:32 ] [ ]
شیمی معدنی

شیمی معدنی

شیمی معدنی

شیمی معدنی

 

منبع : www.roshd.ir - رشد

 

[ دوشنبه بیستم اردیبهشت 1389 ] [ 17:33 ] [ ]
شیمی نظریشیمی را می‌توان به صورت علمی که با توصیف ویژگیها ، ترکیب و تبدیلات ماده سروکار دارد، تعریف کرد. اما این تعریف ، نارساست. این تعریف ، بیانگر روح شیمی نیست. شیمی همچون دیگر علوم ، سازمانی زنده و در حال رشد است، نه انباره‌ای از اطلاعات. علم ، خاصیت تکوین خودبخود دارد. ماهیت هر مفهوم تازه آن ، خود محرک مشاهده و آزمایشی جدید است که به بهبود بیش از پیش آن مفهوم و سرانجام به توسعه دیگر مفاهیم می‌انجامد.
از آنجا که زمینه‌های علمی همپوشانی دارند، مرز متمایزی میان آنها نمی‌توان یافت و در نتیجه مفاهیم و روشهای علمی کاربرد همگانی پیدا می‌کنند. در پرتو این گونه رشد علمی ، دیگر تعجبی ندارد که یک پژوهش علمی معین ، بارها از مرزهای مصنوعی و پرداخته ذهن بشر بگذرد.
 

قلمرو شیمی مفهومی متعارف


علم شیمی با ترکیب و ساختار مواد و نیروهایی که این ساختارها را بر پا نگه داشته است، سروکار دارد. خواص فیزیکی مواد از این رو مورد مطالعه قرار می‌گیرند که سرنخی از مشخصات ساختاری آنها را بدست می‌دهند و به عنوان مبنایی برای تعیین هویت و طبقه‌بندی بکار می‌روند و کاربردهای ممکن هر ماده بخصوص را مشخص می‌کنند. اما واکنشهای شیمیایی ، کانون علم شیمی هستند. توجه علم شیمی به هر گوشه قابل تصوری از این تغییر و تبدیلها کشیده می‌شود و شامل ملاحظاتی است از این قبیل:


• شرح تفصیلی درباره چگونگی واکنشهای و سرعت پیشرفت آنها
• شرایط لازم برای فراهم کردن تغییرات مطلوب و جلوگیری از تغییرات نامطلوب
• تغییرات انرژی که با واکنشهای شیمیایی همراه است.
• سنتز موادی که در طبیعت صورت می‌گیرد.
• سنتز موادی که مشابه طبیعی ندارند.
• روابط کمّی جرمی بین مواد در تغییرات شیمیایی.

 

پیدایش شیمی جدید


شیمی جدید که در اواخر سده هیجدهم ظاهر شده است، طی صدها سال ، توسعه یافته است. داستان توسعه شیمی را تقریبا به پنج دوره می‌توان تقسیم کرد:


فنون عملی


این فنون تا 600 سال قبل از میلاد مسیح رایج بوده است. تولید فلز از کانه‌ها ، سفالگری ، تخمیر ، پخت و پز ، تهیه رنگ و دارو فنونی باستانی است. شواهد باستان شناسی ثابت می‌کند که ساکنان مصر باستان و بین‌النهرین در این حرفه‌ها مهارت داشته‌اند. ولی چگونه و چه وقت این حرفه‌ها برای نخستین بار پیدا شده‌اند، معلوم نیست.
در این دوره ، فنون مذکور که در واقع فرایندهای شیمیایی هستند، توسعه بسیار یافته‌اند. اما این توسعه و پیشرفت ، تجربی بوده است، بدین معنی که مبنای آن تنها تجربه عملی بوده، بدون آنکه تکیه گاهی بر اصول شیمیایی داشته باشد. فلزکاران مصری می‌دانستند که چگونه از گرم کردن کانه مالاشیت با زغال ، مس بدست آورند، ولی نمی‌دانستند و در صدد دانستن آن هم نبودند که چرا این فرایند موثر واقع می‌شود و آنچه در آتش صورت می‌گیرد، واقعا چیست؟


نظریه‌های یونانی


این نظریه‌ها از 600 تا 300 سال قبل از میلاد عنوان شدند. جنبه فلسفی یا جنبه نظری شیمی حدود 600 سال قبل از میلاد در یونان باستان آغاز شد. اساس علم یونانی ، جستجوی اصولی بود که از طریق آن ادراکی از طبیعت حاصل شود. دو نظریه یونانی در سده‌های واپسین اهمیت فراوان یافت:


 مقاله شیمی - شیمی نظری
• این مفهوم که تمام مواد موجود در زمین ، ترکیبی از چهار عنصر (خاک ، باد ، آتش و آب) است، به نسبتهای گوناگون ، از اندیشه‌های فیلسوفان یونانی این دوره نشات یافته است.
• این نظریه که ماده از آحاد مجزا و جدا از همی به نام اتم ترکیب یافته است، بوسیله لوسیپوس پیشنهاد شد و دموکرتیس آن را در سده پنجم ق.م. توسعه داد.
• نظریه افلاطون این بود که اتمهای یک عنصر از لحاظ شکل با اتمهای عنصر دیگر تفاوت دارد. علاوه بر این ، او باور داشت که اتم‌های یک عنصر می‌توانند با تغییر شکل به اتمهایی از نوع دیگر تغییر یابند یا استحاله پیدا کنند. مفهوم استحاله در نظریه‌های ارسطو نیز منعکس است.
• ارسطو (که به وجود اتمها معتقد نبود) می‌گفت که عناصر و بنابراین تمام مواد از ماده اولیه یکسانی ترکیب یافته‌اند و تفاوت آنها فقط از لحاظ صورتهایی است که این ماده اولیه به خود می‌گیرد. به نظر ارسطو ، صورت ماده نه تنها شکل ، بلکه کیفیتها (از لحاظ رنگ ، سختی و غیره) را نیز دربر می‌گیرد و همین صورت است که ماده‌ای را از ماده دیگر متمایز می‌کند. او می‌گفت که تغییر صورت پیوسته در طبیعت صورت می‌گیرد و تمام اشیای مادی (جاندار و بی جان) از صورتهای نابالغ به صورتهای بالغ رشد و تکامل می‌یابند.
• در سراسر قرون وسطی باور این بود که کانی‌ها رشد می‌کنند و هرگاه کانیها از معادن استخراج شوند، معادن بار دیگر از کانیها پر می‌شوند.

 
کیمیاگری


کیمیاگری از 300 سال قبل از میلاد تا حدود 1650 میلادی رایج بود. سنت فلسفی یونان باستان و تجارت صنعتگران مصر باستان در شهری که بوسیله اسکندر کبیر در 331 ق.م. بنا شد یعنی اسکندریه مصر ، با هم جمع شدند و حاصل آمیزش آنها ، کیمیاگری بود. کیمیاگران اولیه برای ابداع نظریه‌هایی درباره ماهیت ماده از روشهای مصری برای بکارگیری مواد استفاده می‌کردند.

کیمیاگران باور داشتند که یک فلز می‌تواند با تغییر کیفیات (بویژه رنگ آن) تغییر پذیرد و چنین تغییراتی در طبیعت صورت می‌گیرد. فلزات می‌کوشند تا همچون طلا کامل شوند. همچنین آنها باور داشتند که این گونه تغییرات ممکن است بوسیله مقدار بسیار اندکی از یک عامل استحاله کننده قوی (که بعدا سنگ فیلسوفان نامیده شد) ایجاد شود.
در سده هفتم میلادی ، مسلمانان مراکز تمدن هلنی (از جمله مصر در 640 میلادی) را تسخیر کردند و کیمیاگری بدست آنها افتاد. در سده‌های دوازدهم و سیزدهم ، کیمیاگری به تدریج به اروپا راه یافت و آثار عربی به لاتین برگردانده شد. کیمیاگری تا سده هفدهم دوام یافت. در این زمان نظریه‌ها و نگرشهای کیمیاگران بتدریج زیر سوال قرار می‌گرفت.
کار رابرت بویل که اثر معروف خود به نام شیمیدان شکاک را در 1661 منتشر کرد، در این باره ارزشمند است. گرچه بویل باور داشت که استحاله فلزات پست به طلا امکان‌پذیر است، ولی او اندیشه کیمیاگری را مورد انتقاد شدید قرار داد. بویل باور داشت که نظریه شیمیایی باید حاصل شواهد تجربی باشد.


فلوژیستون


این نظریه از 1650 تا 1790 میلادی رواج داشت. تقریبا در سراسر سده هجدهم ، نظریه فلوژیستون نظریه‌ای مسلط در شیمی بود. این نظریه که بعدها معلوم شد نظریه‌ای نادرست است، در اصل کار "گئورک ارنست اشتال" بود. فلوژیستون «اصل آتش» ، جز تشکیل دهنده ماده‌ای دانسته می‌شد که متحمل سوختن می‌شود. چنین پنداشته می‌شد که یک جسم بر اثر سوختن ، فلوژیستون خود را از دست می‌دهد و به صورت ساده‌تری کاهیده می‌شود. باور این بود که نقش هوا در عمل سوختن ، انتقال فلوژیستون آزاد شده است.

بنا به نظریه فلوژیستون چوب در اثر سوختن به خاکستر و فلوژیستون (که بوسیله هوا جدا می‌شود)تبدیل می‌گردد. طبق نظریه فلوژیستون ، چوب ، ماده مرکبی است که از خاکستر و فلوژیستون ترکیب یافته است. همچنین در مورد عمل تکلیس ، این نظریه عنوان می‌دارد که فلز ، ماده مرکبی است که از یک کالکس و فلوژستیون ترکیب یافته است.

در نظریه فلوژیستون ، ذاتا" مشکلی است که هرگز توضیح کافی درباره آن داده نشد. وقتی چوب می‌سوزد، فرض بر این است که فلوژیستون از دست می‌دهد و نتیجه آن خاکستری است که وزن آن کمتر از قطعه چوب اصلی است. اما در عمل تکلیس ، از دست رفتن فلوژیستون با افزایش وزن همراه است، چون کالکس یا اکسید فلزی ، وزنش بیشتر از فلز اصلی است. طرفداران نظریه فلوژیستون این مشکل را تشخیص اده بودند، لیکن تقریبا در سراسر سده هیجدهم ، اهمیت توزین و اندازه گیری دانسته نشد. 


 شیمی جدید


کار آنتوان لاوازیه در اواخر سده هیجدهم را معمولا آغاز شیمی جدید می‌دانند. "لاوازیه" ،‌ با تعمق کافی ، دست‌اندرکار براندازی نظریه فلوژیستون شد و انقلابی در شیمی پدید آورد. او که ترازوی شیمیایی بسیار استفاده می‌کرد، با تکیه بر نتایج آزمایشهای کمی ، به توضیح تعدادی از پدیده‌های شیمیایی دست یافت.

قانون پایستاری جرم می‌گوید که در جریان یک واکنش شیمیایی تغییر محسوسی در جرم صورت نمی‌گیرد. به گفته دیگر ، جرم کل تمام موادی که در واکنش شیمیایی وارد می‌شوند، برابر جرم تمام محصولات واکنش است. این قانون ، توسط لاوازیه به وضوح بیان شد. برای لاوازیه نظریه فلوژیستون امری ناممکن بود.

اقداماتی که دانشمندان از سالهای 1970 به بعد به عمل آورده‌اند، با استفاده از کتاب لاوازیه با عنوان « رساله‌ای مقدماتی درباره شیمی» که در سال 1789 منتشر شد، بیان شده است. آنچه در دو سده پس از لاوازیه درباره شیمی دانسته شده، بسیار بیشتر از بیست سده پیش از اوست. علم شیمی از آن زمان به بعد ، تدریجا در پنج شاخه اصلی بسط یافت. (البته این تقسیمات اختیاری است و به طبقه بندی آنها انتقادهایی وارد است.


 طبقه‌بندی شیمی


• شیمی آلی : شیمی ترکیبات کربن است.
• شیمی معدنی : شیمی تمامی عناصر به جز کربن. البته بعضی از ترکیبات ساده کربن مانند کربناتها و  بطور سنتی در زمره ترکیبات معدنی طبقه بندی می‌شوند، زیرا از منابع معدنی بدست می‌آیند.
• شیمی تجزیه : تشخیص اجزای تشکیل دهنده مواد ، هم از لحاظ کیفی و هم از لحاظ کمی.
• شیمی فیزیک : مطالعه اصول فیزیکی که زمینه درک ساختار ماده و تبدیلات شیمیایی است.
• زیست شیمی : شیمی سیستمهای زنده اعم از گیاهی و حیوانی.

منبع : www.roshd.ir - رشد

 

[ یکشنبه نوزدهم اردیبهشت 1389 ] [ 12:34 ] [ ]
طیف سنجی فلوئورسانس

دید کلی


بسیاری از سیستم‌های شیمیایی ، فوتولومینسانس هستند، یعنی این سیستم‌ها می‌توانند توسط تابش الکترومغناطیسی برانگیخته شوند و متعاقب آن ، تابشی یا با همان طول موج یا با طول موج دیگر ، مجددا نشر کنند. دو نوع از متداول‌ترین وجوه فوتولومینسانس «فلوئورسانس» و «فسفرسانس» هستند.

این دو تابش ، توسط فرایندهای مکانیکی متفاوتی تولید می‌شوند. این دو پدیده را می‌توان بطور تجربی با مشاهده طول عمر حالت برانگیخته ، از یکدیگر تمیز داد. در مورد فلوئورسانس ، فرآیند لومینسانس تقریبا بلافاصله پس از قطع تابش ، متوقف می‌شود، اما فسفرسانس معمولا برای مدت زمانی که به آسانی قابل آشکارسازی است، دوام می‌آورد. با طیف‌سنجی فلوئورسانس (fluorescence spectrophotometry)آشنا می‌شویم.


استفاده تجربی از فلوئورسانس و فسفرسانس (Fluorescence & Phosphorescence)


اندازه گیری شدت فلوئورسان ، تعیین کمی ‌مقدار بسیار کم تعداد زیادی از گونه‌های معدنی و آلی را امکان‌پذیر می‌سازد. تعداد زیادی روشهای فلوئورسانس سنجی مفید ، بخصوص برای سیستم‌های زیستی ، موجود است. یکی از جالبترین وجوه فلوئورسانس سنجی ، حساسیت ذاتی آن است. حد پایین اندازه گیری توسط این روش اغلب با ضریب 0,1 یا بهتر ، کمتر از حد پایین اندازه گیری توسط یک روش جذبی است و این حد در گستره بین چند هزارم تا شاید یک دهم یک قسمت در میلیون (0.1 از ppm) قرار می‌گیرد.

بعلاوه ، گزینش‌پذیری این روش حداقل بخوبی و احتمالا بهتر از سایر روشها است. با وجود این ، فلوئورسانس سنجی کمتر از روشهای جذبی مورد استفاده قرار می‌گیرد، زیرا تعداد نسبتا محدودی سیستم‌های شیمیایی وجود دارند که می‌توانند فلوئورسانس تولید کنند. فسفرسانس نیز تنها در حد بسیار محدودی در مسائل تجزیه‌ای بکار گرفته می‌شود.

 

 نظریه فلوئورسانس


مثالهایی از رفتار فلوئورسانس را می‌توان در سیستم های ساده و همچنین در سیستم های پیچیده شیمیایی ، در حالت گازی ، مایع و جامد مشاهده کرد. ساده‌ترین نوع فلوئورسانس ، توسط بخارات اتمی رقیق به نمایش گذارده می‌شود. بعنوان مثال ، الکترونهای 3s اتمهای سدیم بخارشده ، می‌توانند با جذب تابش 5895 و 5790 آنگستروم به حالت 3p برانگیخته شوند. پس از سپری شدن بطور متوسط 8-10 ثانیه ، الکترونها به حالت عادی بر می‌گردند و در ضمن این عمل ، تابش با همان دو طول موج را در کلیه جهات منتشر می‌کنند.

این نوع فلوئورسانس که در آن تابش جذب شده بدون تغییر دوباره منتشر می‌شود ، به تابش رزونانسی یا فلوئورسانس رزونانسی مشهور است. در مورد مولکولها یا یونهای چند اتمی‌ نیز تابش رزونانسی به وقوع می‌پیوندد. بعلاوه اینکه تابش مشخصه با طول موجهای طولانی‌تر نشر می‌شود. این پدیده به نام جابجایی استوکس معروف است.

تقریبا تمام سیستم‌های فلوئورسانس که برای تجزیه مفیدند، ترکیبات پیچیده آلی هستند که حاوی یک یا چند گروه عاملی آروماتیک می‌باشند.


اندازه گیری فلوئورسانس


اجزاء سازنده مختلف دستگاه‌های اندازه گیری فلوئورسانس ، مشابه ‌اجزاء سازنده نورسنج‌ها می‌باشند. تابش یک منبع مناسب از درون یک تک‌فام ساز یا صافی می‌گذرد که وظیفه آن عبور بخشی از پرتو است که فلوئورسانس را بر می‌انگیزد و طول موجهایی را که متعاقبا توسط نمونه نور داده شده تولید می‌شوند، حذف می‌کند. تابش فلوئورسان ، توسط نمونه در تمام جهات نشر می‌شود، اما مناسب‌ترین زاویه مشاهده آن ، زاویه قائمه نسبت به تابش تحریک است. در بقیه زوایا ، افزایش پراکندگی توسط محلول و دیواره‌های سلول احتمالا منجر به خطاهای بزرگی در اندازه گیری شدت فلوئورسان می‌شود.

تابش منتشره پس از عبور از درون یک سیستم صافی یا تک‌فام‌ساز دوم که پیک فلوئورسان را مجزا می‌کند، به یک آشکارساز فتوالکتریک می‌رسد. خروجی آشکارساز تقویت می‌شود و بر روی یک «ثبات» یا یک «نوسان نما» نمایش داده می‌شود. فلوئورسان‌ سنج‌ها در این مورد با نورسنجها وجه ‌اشتراک دارند که در آنها نیز برای محدود کردن طول موجهای پرتو تحریک و نشر ، صافی بکار گرفته می‌شود.


طیف فلوئورسانس ‌سنج‌ها


طیف فلوئورسانس سنج‌ها ، بر دو نوعند: نوع اول یک صافی مناسب را برای محدود کردن تابش تحریک و یک تک‌فام‌ساز شبکه‌ای یا منشوری را برای مجزا کردن یک پیک نشری فلوئورسان بکار می‌گیرد. چندین طیف نورسنج تجارتی را با دستگاههای رابطی که ‌امکان استفاده ‌از آنها بدین منظور میسر می‌سازد، می‌توان خریداری کرد. طیف فلوئورسانس سنج‌های واقعی دستگاههایی اختصاصی هستند که مجهز به دو تک‌فام ساز می‌باشند. یکی از این تک‌فام سازها تابش تحریک را به یک نوار باریک محدود می‌سازد؛ تک‌فام ساز دیگر امکان مجزا کردن یک طول موج فلوئورسان بخصوص را فراهم می‌کند.

گزینش‌پذیری فراهم شده توسط این دستگاهها در تحقیقات مربوط به مشخصات الکترونی و ساختمانی مولکولها اهمیت زیادی دارد و در کارهای تجزیه‌ای نیز ارزشمند است. با این همه ، برای بیشتر مقاصد تجزیه‌ای ، اطلاعات حاصل از دستگاههای ساده‌تر ، کاملا رضایت‌بخش است. در حقیقت ، فلوئورسان سنج‌های به نسبت ‌ارزان قیمتی اختصاصا برای رفع مشکلات سنجشی خاص تجزیه‌های فلوئورسان طراحی شده‌اند که ‌اغلب همان ویژگی و گزینش‌پذیری طیف نورسنج‌های پیشرفته را دارند.
اجزا سازنده فلوئورسانس سنجها و طیف فلوئورسانس سنج‌ها


منابع


در بیشتر کاربردها ، به منبعی نیاز است که نسبت به لامپهای تنگستن یا هیدروژن که در اندازه‌گیری‌های جذبی مورد استفاده قرار می‌گیرند، دارای شدت بیشتری باشد. معمولا یک لامپ کمان جیوه‌ای یا گزنونی بکار گرفته می‌شود.
صافیها و تک‌فام سازها
صافیهای تداخلی و جذبی هر دو ، در فلوئورسانس سنجها بکار برده شده‌اند. بیشتر طیف فلوئورسانس سنج‌ها به تک‌فام سازهای شبکه‌ای مجهزند.
آشکارسازها
علامت فلوئورسان نوعی ، دارای شدت کمی ‌است و بنابراین برای اندازه گیری آن به ضرایب تقویتی بزرگی نیاز داریم. در دستگاههای فلوئورسانس حساس ، از لوله‌های فوتو تکثیر کننده بعنوان آشکارساز در مقیاس وسیعی استفاده می‌شود.
سلولها و محفظه‌های سلولها
سلولهای استوانه‌ای و مستطیلی ساخته شده ‌از شیشه و سیلیس هر دو در اندازه گیری‌های فلوئورسانس بکار گرفته می‌شوند. باید نهایت دقت در طرح محفظه سلول به عمل آید تا مقدار تابش پراکنده‌ای که به آشکارساز می‌رسد، کم شود. برای این منظور ، اغلب تیغه‌هایی در داخل محفظه گذاشته می‌شود.

 

 

[ شنبه هجدهم اردیبهشت 1389 ] [ 11:35 ] [ ]
شیمی نفت

تاریخچه


این ماده را از قرنها پیش بصورت گاز در آتشکده و یا به فرم قیر (کاده ای که پس از تبخیر مواد فرار یا سبک نفت از آن باقی می‌ماند) می‌شناخته‌اند یا بطوری که در کتب مقدس و تاریخی اشاره شده است که در ساختمان برج بابل از قیر استفاده گردیده و کشتی نوح و گهواره موسی نیز به قیر اندوده بوده است. بابلی‌ها از قیر بعنوان ماده قابل احتراق در چراغها و تهیه ساروج جهت غیر قابل نفوذ نمودن سدها و بالاخره جهت استحکام جاده‌ها استفاده می‌کرده‌اند.

مدت زمان مدیدی ، مورد استعمال نفت فقط برای مصارف خانگی و یا به عنوان چرب‌کننده‌ها بود، اما از آغاز قرن شانزدهم میلادی روز به روز موارد استعمال آن رو به افزایش نهاد تا اینکه در سال 1854 دو نفر داروساز وجود یک فراکسیون سبک قابل اشتعال را در روغن زمینی تشخیص دادند و همچنین به کمک تقطیر ، مواد دیگری بدست آوردند که برای ایجاد روشنایی بکار می‌رفت. بر اساس این کار آزمایشگاهی بود که بعدا دستگاههای عظیم تصفیه نفت طرح‌ریزی و مورد بهره برداری قرار گرفت. صنعت نفت در آتازونی در سال 1859 شروع شد.


تاریخچه استخراج نفت در ایران


صنعت نفت ایران نیز از سال 1908 پس از هفت سال تفحص مکتشفین و کشف نفت در مسجدسلیمان واقع در دامنه جبال زاگرس ، پا به عرصه وجود گذاشت.


نفت خام
امروزه چاههای نفت متعددی در سراسر جهان وجود دارد که از آنها نفت استخراج می‌کنند و به نفتی که از چاه بیرون کشیده می‌شود، نفت خام می‌گویند. نفت خام را تصفیه می‌کنند، یعنی هیدروکربنهای گوناگونی را که نفت خام از آنها تشکیل شده است از یکدیگر جدا می‌کنند که به این کار پالایش نفت می‌گویند و در پالایشگاهها این کار انجام می‌شود. نفت منبع انرژی و سرچشمه مواد اولیه بسیاری از ترکیبات شیمیایی است و این دور از عوامل اصلی اقتصادی مدرن بشمار می‌رود. در صنایع جدید از ثروت بیکران و تغییر و تبدیل مواد خام اولیه آن بی‌اندازه استفاده می‌شود.

 

تشکیل نفت
نحوه پیدایش نفت دقیقا تشخیص داده نشده و در این مورد فرضیات گوناگونی پیشنهاد شده است. برخی از این تئوریها ، مربوط به مواد معدنی و بعضی دیگر مربوط به ترکیبات آلی می‌باشد.


تشکیل نفت از مواد معدنی
اساس این فرضیه بر این است که کربورهای فلزی تشکیل شده در اعماق زمین در اثر تماس با آب‌هایی که در زمین نفوذ می‌نماید، ابتدا ایجاد هیدروکربورهای استیلنی با رشته زنجیر کوتاه می‌کند. سپس هیدروکربورهای حاصل در اثر تراکم و پلیمریزه شدن ایجاد ترکیبات پیچیده و کمپلکس را می نماید که اغلب آنها اشباع شده است.


تشکیل نفت از مواد آلی
بر اساس این فرضیه تشکیل نفت را در اثر تجزیه بدن حیوانات در مجاورت آب و دور از هوا می‌دانند. زیرا در این شرایط ، قسمت اعظم مواد ازته و گوگردی تخریب و مواد چرب باقیمانده در اثر آب ، هیدرولیز می‌گردد. اسیدهای چرب حاصله ، تحت اثر فشار و درجه حرارت با از دست دادن عوامل اسیدی تولید هیدروکربورهائی با یک اتم کربن کمتر می‌نماید.

"انگلر Engler" از تقطیر حیوانات دریائی توانسته است مواد نفتی را تهیه نماید و با توجه به خاصیت "چرخش نوری" مواد نفتی که علت آن وجود گلسترین است (ماده ای که در بدن حیوانات وجود دارد) این فرضیه بیان و مورد تایید شده است. در صورتی که فرضیه های دیگر که مبتنی بر اساس مواد معدنی در تشکیل نفت می‌باشد، هیچگونه توضیح و دلیل قانع کننده ای در مورد این ویژگی نمی‌تواند بیان نماید.

همچنین نفت می‌تواند از تجزیه گیاهان تولید گردد. در این حالت ، خاصیت چرخش نور را به علت وجود ترکیب مشابه گلسترین یعنی پلی استرولها می‌دانند."مرازک Mrazec" ، میکروبها را در این تغییر و تبدیل موثر می‌داند.

تئوری تشکیل نفت بر مبنای مواد آلی ، فعلا بیشتر مورد قبول می‌باشد و اختلاف قابل ملاحظه‌ای را که بین ژیزمان‌ها (منابع نفتی) مشاهده می‌گردد، بعلت شرایط و عوامل مختلف تشیکل ژیزمان‌ها می‌دانند.
 


مواد سازنده نفت خام


مواد سازنده نفت از نظر نوع هیدروکربور و همچنین از نظر نوع ترکیبات هترواتم دار بستگی به محل و شرایط تشکیل آن دارد. بنابراین مقدار درصد مواد سازنده نفت خام در یک منبع نسبت به منبع دیگر تغییر می‌کند. بطور کلی مواد سازنده نفت شامل: هیدروکربورها- ترکیبات اکسیژنه - سولفوره - ازته و مواد معدنی می‌باشد.
خواص نفت خام


گرانی


چگالی نفتهای خام را بیشتر بر حسب درجه A.P.I به جای گرانی ویژه (چگالی نسبی) بیان می‌کنند. ارتباط بین این دو ، به گونه ای است که افزایش گرانی API با کاهش گرانی ویژه مطابقت می‌کند. گرانی نفت خام می‌تواند بین پایینتر از 10API تا بالاتر از 50API قرار بگیرد، ولی گرانی اکثر نفتهای خام در گستره بین 20 تا 45API قرار دارد. گرانی API همواره به نمونه مایع در 60 درجه فارینهایت اشاره دارد.


مقدار گوگرد


مقدار گوگرد و گرانی API دو خاصیتی هستند که بیشترین اثر را به ارزش‌گذاری نفت خام دارند. مقدار گوگرد بر حسب درصد وزنی گوگرد بیان می‌شود و بین 0,1 در صد تا 5 درصد تغییر می‌کند. نفتهایی که بیش از 0,5 درصد گوگرد دارند، در مقایسه با نفتهای کم‌گوگردتر ، معمولا محتاج فراورشهای گسترده‌تری هستند.


نقطه ریزش


نقطه ریزش نفت خام بر حسب F˚ یا c˚ معرف تقریبی پارافینی‌ بودن یا آروماتیکی ‌بودن نسبی آن است. هرچه نقطه ریزش پایینتر باشد، مقدار پارافین کمتر و مقدار آروماتیک بیشتر است.


حلالیت


قابلیت انحلال هیدروکربورها در آب عموما خیلی کم می‌باشد. مقدار آب موجود در هیدروکربورها با افزایش درجه حرارت زیاد می‌شود. حلالیت هیدروکربورها در کلروفرم ، سولفورکربن و تتراکلریدکربن حائز اهمیت است که با افزایش درجه حرارت ، زیاد و با افزایش وزن مولکولی کاسته می‌گردد. قابلیت انحلال آروماتیکها بیشتر بوده و بعد از آنها اولفین‌ها - نفتن‌ها - متانی‌ها قرار دارد.

ضمنا قابلیت انحلال ترکیبات اکسیژنه - ازته - سولفوره ، کمتر از هیدروکربورها می‌باشد. بالاخره نفت ، حلال هیدروکربورهای گازی‌شکل و تقریبا تمام هیدرورکربورهای جامد - گریس‌ها - رزین‌ها - گوگرد و ید می‌باشد.


نقطه جوش


نقطه جوش هیدروکربورهای خالص با وزن مولکولی و همچنین برای سری‌های مختلف با تعداد مساوی اتم کربن بترتیب از هیدروکربورهای اشباع‌شده به اولفین‌ها - نفتن‌ها و آروماتیکها افزایش می‌یابد. بدین ترتیب نقطه جوش هیدروکربورهای اشباع شده و اولفین‌ها از همه کمتر و سیکلوآلکان‌ها و آروماتیکها از سایرین بیشتر می‌باشد.

برای برش‌های نفتی که مخلوطی از هیدروکربورهای مختلف می‌باشند، یک نقطه جوش ابتدائی و یک نقطه جوش انتهایی در نظر گرفته می‌شود و حد فاصل بین این دو نقطه برای یک برش به نوع مواد سازنده اغلب زیاد و متغیر می‌باشد که به این حد فاصل بین دو نقطه "گستره تقطیر" گفته می‌شود.


گرمای نهان تبخیر
گرمای نهان تبخیر در یک سری همولوگ از هیدروکربن‌ها بترتیب از مواد سبک به سنگین کاهش می‌یابد و همچنین مقدار آن از یک سری به سری دیگر ، مثلا بترتیب از آروماتیکها به نفتن‌ها و هیدروکربورهای اشباع شده نقصان می‌یابد. بنابراین گرمای نهان تبخیر با دانسیته فراکسیون مربوط بستگی دارد.


قدرت حرارتی
قدرت حرارتی عبارت از مقدار کالری است که از سوختن یک گرم ماده حاصل می‌شود. قدرت حرارتی هیدروکربورها به ساختمان مولکولی آنها و قدرت حرارتی یک برش نفتی به نوع و مواد سازنده آن سبتگی دارد. قدرت حرارتی متان بیشتر از سایر هیدروکربورها و برابر با 13310 کیلوکالری به ازای یک کیلوگرم می‌باشد و مواد سنگین حاصله از نفت خام دارای قدرت حرارتی در حدود 10000 کیلو کالری می‌باشد.


اثر اسید نیتریک
هیدروکربورها در اثر اسید نیتریک به ترکیبات نیتره یا پلی‌نیتره تبدیل می‌شود. نیتراسیون برخی از مواد نفتی منجر به تهیه ترکیبات منفجره یا مواد رنگین می‌گردد.
 


موارد استعمال برخی از برش های نفتی بدست آمده از نفت خام


شیرین کردن آب دریا
یکی از موارد استعمال گازهای نفتی در صنایع وابسته به پالایشگاهها تهیه آب شیرین از آب شور می‌باشد.


به عنوان سوخت
از جمله ، بنزین برای سوخت موتورهای مختلف ، کروزون سوخت اغلب تراکتورها و ماشین‌های مورد استفاده در کشاورزی و همچنین موتورهای جت هواپیماها اغلب از کروزون یا نفت سفید می‌باشد، گازوئیل که موتورهای دیزل بعنوان سوخت از نفت گاز (گازوئیل) استفاده می‌نمایند، نفت کوره یا مازوت یک جسم قابل احتراق با قدرت حرارتی 10500 کالری بوده که بخوبی می‌تواند جانشین زغال سنگ گردد و سوختن آن تقریبا بدون دود انجام می‌گیرد.


روشنایی
از کروزون جهت روشنایی و همچنین برای علامت دادن به کمک آتش استفاده می‌شود، چون نقطه اشتعال کروزون بالاتر از 35 درجه است، لذا از نظر آتش‌سوزی خطری ندارد.


حلال
از هیدروکربورهای C4 تا C10 می‌توان برش‌هائی با دانسیته و نقاط جوش ابتدائی و انتهایی متفاوت تهیه نمود که مورد استعمال آنها اغلب بعنوان حلال می‌باشد. بعنوان مثال ، اتر نفت یک حلال سبک با نقطه جوش 75-30 درجه سانتیگراد و وایت اسپیریت (حلال سنگین) که از تقطیر بنزین بدست می‌آید بعنوان حلال ، رنگ‌های نقاشی و ورنی ها استفاده می‌گردد. همچنین برای تمیز کردن الیاف گیاهی و حیوانی و یا سطح فلزات از برش‌های خیلی فرار (تقطیر شده قبل از 110 درجه سانتیگراد) استفاده می‌شود.


روان کاری


• روغنهای چرب کننده: نوعی روغن که جهت روان کاری بکار می‌رود. بستگی به شارژ ، سرعت ، درجه حرارت دستگاه دارد. انواع روغنها عبارتند از:


1. روغن دوک برای چرب کردن دوک ، موتورهای الکتریکی کوچک و ماشین های نساجی و سانتریفوژهای کوچک
2. روغن ماشین‌های یخ سازی جهت روغنکاری کمپرسورهای آمونیاکی کارخانجات یخ‌سازی
3. روغن ماشین‌های سبک جهت روان کاری موتورهای الکتریکی ، دینام‌ها و سانتریفوژهای با قدرت متوسط
4. روغن ماشین‌های سنگین مخصوص روغنکاری موتورهای دیزلی است مانند دیزل‌های سورشارژه و غیره
5. روغن برای سیلندرهای ماشین بخار
6. روغن برای توربین ها
7. روغن برای موتورهای انفجاری (اتومبیل و غیره)
8. روغن دنده
9. روغن موتورهایی که دائما با آب در تماس است.


• گریس ها: یک روان کننده نیمه جامد است و متشکل از یک روغن نفتی و یک پر کننده (از سری صابونهای فلزی) یا سفت‌کننده (از مواد پلیمری) می‌باشد. کاربرد گریس بیشتر برای اتومبیل‌ها و برخی صنایع مناسب می‌باشد.
• آسفالت و قیراندودی: در حال حاضر 75 درصد از باقیمانده حاصل از عمل تقطیر در خلاء برای پوشش جاده‌ها مورد استفاده قرار می‌گیرد.
• موارد استعمال داروئی: از قبیل وازلین باعث نرم شدن پوست بدن گردیده و برای بهبود سرمازدگی نیز موثر است.
• پارافین: از پارافین ذوب شده و خالص شده جهت ساخت داروهای زیبائی استفاده می‌گردد.
• گلیسیرین: مقدار قابل ملاحظه ای از این ماده ، از نفت تهیه می‌گردد. علاوه بر مصارفی که گلیسیرین در صنعت (برای تهیه باروت دینامیت ، مرکب و غیره) دارد، از آن برای فرم نگه داشتن پوست بدن و یا تهیه داروهائی از قبیل گلیسیرین یده استفاده می‌شود.

 

 

[ جمعه هفدهم اردیبهشت 1389 ] [ 7:35 ] [ ]

بدون تردید هرگاه صحبت از یخ می‌شود همه ما به یاد سرما می‌افتیم اما این بار می‌خواهیم شما را با نوعی یخ آشنا كنیم كه برخلاف یخ‌های معمولی به جای این كه سرد باشد داغ است. سدیم استات و یا به عبارت دیگر همان یخ داغ ماده شیمیایی عجیب و منحصر به فردی است كه شما می‌توانید آن را به آسانی و با استفاده از مقداری سركه و جوش‌شیرین تهیه كنید.

اگر سدیم استات را تا دمایی پایین‌تر از نقطه ذوب آن سرد كرده و سپس آن را به شكل بلوری درآورید یخ داغ تهیه كرده‌اید. از آنجایی كه این فرآیند گرمازاست بنابراین ماده یخی شكل حاصل از آن در نتیجه حرارت آزاد شده در جریان این فرآیند داغ و سوزان خواهد بود. انجماد سدیم استات مایع تا حدی سریع انجام می‌شود كه همزمان با ریختن آن می‌توانید شكل خاصی را به آن بدهید.

در یك ظرف یك لیتر سركه را با چهار قاشق غذاخوری جوش‌شیرین تركیب كرده و محتوی ظرف را برای مدت زمان كوتاهی به‌هم بزنید. در نتیجه واكنش شیمیایی انجام شده بین این دو ماده سدیم استات و گاز دی‌اكسید كربن حاصل می‌شود.

توجه داشته باشید كه اگر جوش‌شیرین را به آرامی به سركه اضافه نكنید آتشفشانی در ظرف شما ایجاد خواهد شد كه از كناره‌های ظرف به بیرون می‌ریزد. از آنجایی كه سدیم استات حاصل بسیار رقیق است لازم است آن را برای مدت زمان كوتاهی بجوشانید تا غلیظ‌تر شود.

این كار را تا زمانی ادامه دهید كه در سطح محلول یك پوسته كریستالی تشكیل شود. با توجه به شدت حرارت و مدت زمانی كه این محلول در معرض حرارت قرار می‌گیرد تا غلیظ شود رنگ نهایی آن متفاوت خواهد بود. پس از آن بلافاصله سطح محلول را بپوشانید تا از تبخیر آن جلوگیری شود. اگر بلورهایی در محلول شما شكل گرفته است باید مقداری آب با سركه به آن اضافه كنید. پس از آن می‌توانید آن را در یخچال قرار دهید تا یخ بزند.

در حقیقت سدیم استات موجود در این محلول به دست آمده كه در یخچال قرار گرفته است نمونه‌ای از یك مایع ابرسرد است.

اگر دمای محیط كمتر از نقطه ذوب سدیم استات باشد، این ماده به شكل مایع خواهد بود اما شما می‌توانید با اضافه كردن یك قطعه كریستالی كوچك از سدیم استات و یا لمس كردن سطح محلول با یك قاشق و یا حتی انگشت دست‌تان فرآیند تشكیل بلور در این محلول را راه‌اندازی كنید.

همزمان با تشكیل یخ، گرما آزاد خواهد شد و شما می‌توانید به آسانی حرارت خارج شده از ظرف محتوی محلول را احساس كنید. سدیم استات یك ماده شمیایی بی‌خطر است و بنابراین می‌توانید با خیالی آسوده این آزمایش علمی را تجربه كنید.

معمولا از این ماده به عنوان یك طعم‌دهنده خوراكی و برای بهبود طعم و مزه غذاها استفاده می‌شود و این در حالی است كه می‌توان آن ‌را  به عنوان یك ماده شمیایی فعال در مواد غذایی كه به صورت گرم بسته‌بندی می‌شوند نیز استفاده كرد و اما نكته جالب توجه این كه حرارت و گرمای حاصل از انجماد این ماده خطراتی مشابه آسیب‌های ناشی از سوختگی‌های معمولی را به همراه نخواهد داشت.

اگر محلولی را كه در حال انجماد است در ظرف دیگری بریزید می‌توانید آن را به شكل دلخواه خود درآورید، البته باید این نكته را مورد توجه قرار دهید كه این مجسمه یخی قابلیت ذوب مجدد را نیز دارد.

[ پنجشنبه شانزدهم اردیبهشت 1389 ] [ 15:48 ] [ ]
صنعت رنگ سازی

رنگ در دنیای امروز نقش بسیار مهمی در پرورش ذوق و قرایح بشری و ارضای نیازهای زیبا شناختی وی ایفا می کند. بدین جهت است که احساس رنگ را به تعبیری حس هفتم می گویند.

انسان در پهنه تولید تزئین خانه ها ، پوشاک و حتی نوشابه ها در هنر ، نقاشی ، صنایع کشتیرانی و امور ارتباطات محصولات مصرفی در صنایع فضایی و خلاصه در همه شئونات با رنگ سر و کار دارد . بطور کلی از رنگ علاوه بر ایجاد زیبایی محیط جهت حفاظت اشیا در مقابل عوامل طبیعی و غیره استفاده می شود .


 
تاریخچه


سابقه استفاده از مواد رنگی توسط انسان به دوران غارنشینی می رسد. اولین کاربرد واقعی و عملی مواد رنگی را می توان در ساختن کشتی نوح مربوط دانست که برای جلوگیری از نفوذ آب و پوسیدگی آن از مواد رنگی استفاده شده بود. بعدها از مواد رنگی برای حفاظت چوب از پوسیدگی در بناهای چوبی و زمانی که استفاده از وسایل آهنی متداول شد. برای جلوگیری از زنگ زدن آنها استفاده می شد .
 
اجزای تشکیل دهنده رنگ ها

هر رنگ اصولا از دو قسمت اصلی تشکیل شده است که عبارتند از:
 
رنگ دانه :

که ماده رنگی نامحلول در آن است ( خاک رس ناخالص رنگی و پودر برف از سنگهای رنگی به عنوان اولین رنگ دانه ها مورد استفاده انسان قرار می گرفتند ).
 
محمل رنگها:

مایعی است که با رنگ دانه مخلوط شده کاربرد آنرا آسان می کند و در چسبیدن آن کمک می کند ( از سفیده تخم مرغ چسب عسل محلول قند به عنوان محمل های رنگ استفاده می شد. امروزه متداول ترین محمل های رنگ دانه ها را آب یا روغن تشکیل می دهد. از اینرو رنگ ها را به دو دسته رنگ‌های روغنی و رنگ‌های آلی تقسیم می کنند.

 
انواع رنگ دانه ها

 

اکسید ها :


لیمونیت ( Fe2O3.2H2O ) برای تهیه رنگ قرمز مصرف می شود و یکی از قدیمی ترین رنگ دانه هاست.
هماتیت ( Fe2O3 ) برای تهیه رنگ قرمز روشن بکار می رود.
دی اکسید تیتان ( TiO2 ) برای تهیه رنگ سفید روشن و بسیار مرغوب که در هوا تیره نمی شود به کار می رود. معمولا آن را با سولفات باریم مخلوط می کنند.
ZnO که از مهم ترین رنگ دانه های سفید است و از تجزیه کربنات روی و یا سوزاندن فلز روی در هوا حاصل می شود.
سرنج ( Pb2O3 ) که رنگ سرخ یا قرمز تیره دارد و بیشتر برای پوشانیدن سطح قطعات فو لادی به منظور حفاظت آن ها از زنگ زدن ، کاربرد دارد.

 

سولفید روی و لیتوپن :

سولفید روی برای تهیه رنگ سفید مات مصرف می شود و از مزایای آن این است که بر خلاف سفید اب سرب در هوا سیاه نمی شود. این رنگ دانه معمولا در تجارت بصورت مخلوطی از سولفید روی و سولفات باریم به نام لیتوپن مصرف دارد که رنگ سفید بسیار مرغوب است.

 

سفید اب سرب :

این رنگ دانه عمدتا شامل Pb(OH)2 , pbCO3 که از قرن ها پیش شناخته شده بود . قدرت پوشش آن ها زیاد است ولی در هوا به علت وجود H2O به مرور سیاه می شود . برای تبدیل مجدد آن به رنگ سفید می توان از تاثیر پر اکسید هیدروژن بر آن استفاده کرد.

 

دوده چراغ و زغال استخوان :

یکی از اجزایی رنگ سیاه و مرکب است و برای تغییر رنگ سفید به میزان دلخواه نیز مصرف می شود.


 
رنگ دانه های فلزی :

مانند پودر آلومینیم در روغن جلا که که از آن برای حفاظت وسایل آهنی و فولادی استفاده می شود.

برنز آلومینیم ( آلیاژ AL,CU) در روغن جلا که از آن برای ایجاد رنگ بسیار زیبای طلایی برای دور قاب ها و ... استفاده می شود.

 

رنگ دانه های الوان :
 
رنگ دانه های آبی :


مهم ترین این این رنگ دانه ها آبی پروس و آبی نیلی یا لاجورد است. آبی پتروس که یکی از مهم ترین رنگ های آبی است . لاجورد نیز یکی از رنگ های آبی مرغوب است که از حرارت دادن مخلوط کائولین ، کربنات سدیم ، گوگرد و زغال سنگ در غیاب هوا حاصل می شود.

 

رنگ دانه های زرد :

مهم ترین این رنگ دانه ها کرومات روی و کرومات سرب است . از قطران زغال سنگ نیز رنگ دانه های الوانی بصورت نمک های نامحلول فلزات به دست می آید که در هیدروکسید آلومینین بصورت ژله می بندد. این ژله را پس از خشک کردن به صورت پودر با رنگ دانه های نظیر کربنات کلسیم و سیلسس مخلوط می کنند و در انواع رنگ های مورد نیاز به کار می برند.

 
رنگ‌های روغنی :

در این نوع رنگ‌ها ، رنگ دانه را در یک روغن خشک شونده که استر گلیسیرین با اسیدهای چرب نظیر اسیدهای اولیک و یا لینولنیک می باشد حل می کنند. این روغن‌‌ها در هوا اکسیده شده و به ترکیبات سیر شده تبدیل می شوند و لایه‌ای سخت مقاوم و محافظ تشکیل می دهند که از نفوذ آب در رنگ دانه جلوگیری می کنند.


رقیق کننده :

برای رقیق کردن و سهولت کاربرد رنگ به کار می رود و معمولا یک حلال هیدرو کربنی نظیر ترپنتین است که به روغن تربانتین شهرت دارد.

 

خشک کننده :

یکی از اجزای رنگ‌های روغنی است که در حقیقت نقش کاتالیزور در تسریع اکسیداسیون و خشک شدن رنگ ها را دارد و معمولا مخلوطی از اکسید های سرب ، منگنز و کبالت در ( روغن بزرک )بصورت استر مصرف می شود.

 
رنگ‌های پلاستیکی

با اضافه کردن رزین های سنتزی نظیر رزین حاصل از فنل و فرمالدئید که خاصیت پلاستیکی دارد در روغن جلا رنگ های پلاستیکی حاصل می شود. این نوع رنگ ها به خاطر دوام و قابل شستشو بودن اهمیت و کاربردهای زیادی دارد.


رنگ‌های لعابی یا مات

با اضافه کردن رنگ هایی نظیر TiO2 به روغن جلا آن را به صورت مات درآورده و بعد برای مات کردن هر نوع رنگی به کار می رود .

 

رنگ اتومبیل

این نوع رنگ ها باید این ویژگی را داشته باشند که به سرعت در هوا خشک شوند. برای این منظور رنگ دانه را در حلال های آلی بسیار فرار نظیر استات آمیل ، استات اتیل یا استات بوتیل حل می کنند . برای رنگ‌های متالیک ( فلزی ) از رنگ دانه های فلزی استفاده می شود .

 

رنگ‌های محلول در آب

این نوع رنگ ها از معلق کردن رنگ دانه ها در آب مخلوط با یک چسب محلول در آب تهیه می شوند. از رنگ‌های روغنی ارزانترند و قابل شستشو نمی باشند

 

[ پنجشنبه شانزدهم اردیبهشت 1389 ] [ 1:36 ] [ ]

انیمیشن های جالب شیمی

اhttp://www.chempic.com/images/chemistry2.jpg

                      شیمی 1               شیمی 2               شیمی 3            پیش دانشگاهی

برای نمایش انیمیشن ها باید برنامه Flash player بر روی کامپیوتر شما نصب باشد.


[ چهارشنبه پانزدهم اردیبهشت 1389 ] [ 16:38 ] [ ]
[ سه شنبه چهاردهم اردیبهشت 1389 ] [ 16:12 ] [ ]
 

استفاده از موجهای تراهرتز برای ردیابی واكنشهای درون سلولی
استفاده ازطول موجهای مختلف در ساخت لوازم خانگی و زندگی روزمره عادی شده است. غذا را می‌توان به سرعت در میكرووله گرم كرد و یا تلویزیون را از راه دور كنترل كرد. اما دقیقأ بین این دو نوع مختلف طول موج، فركانسی قرار دارد كه تا كنون از آن استفاده تكنیكی نشده است: موجهای تراهرتز Terahertz-Wellen. هر روز دامنه تحقیقات در زمینه نحوه استفاده از امواج تراهرتز گسترده‌تر می‌شود.بزودی شاهد لامپها و دوربین‌هایی خواهیم بود كه به كمك امواج تراهترز عمل خواهند كرد.
فیزیكدانان دانشگاه بوخوم در آلمان سعی می‌كنند با كمك این امواج چگونه‌گی و نحوه عملكرد فعالیتهای زیستی را ردیابی كنند. یكی از موضوعاتی كه از مدتی پیش در دست تحقیق است‌‌، بررسی خواص قند در فعالیتهای حیاتی است. قند نه تنها انرژیزاست بلكه نقش مهمی نیز در حفظ تعادل فعالیتهای زیستی بر عهده دارد. مثلأ سفیده تخم‌مرغی كه با كمی قند مخلوط شده است، دیرتر خشك می‌شود و حتی دیرتر هم یخ می‌بندد. به عبارت ساده‌تر قند مانند ضدیخ بیولوژیكی عمل می‌كند. مكانیسمی كه از مدتها پیش شناخته شده است. اما چگونه؟ این پروسه جالب كاملأ ناشناخته است.
مارتینا هاونیت (Martina Havenith) یكی از فیزیكدان دانشگاه شهر بوخوم می‌گوید:
”نظرات متفاوتی در این زمینه وجود دارد، مثلاً می‌توان گفت ملكولهای قند می‌توانند بین ملكولهای آب سر بخورند و جایگزین شوند و یا شاید حضور قند روی خواص آب تأثیر می‌گذارد و حركت ملكولهای آنرا كند می‌كند.“
برای بررسی بیشتر و اثبات این تئوریها ابتدا باید بتوان حركات ملكولهای تشكیل دهنده آب را بررسی كرد. اما این ملكولها در مدت زمانی كمتر از یك بیلیونیوم ثانیه جابه‌جا می‌شود! سرعتی برق آسا كه به سادگی قابل ردیابی نیست. روشهای كه امروزه برای ردیابی حركات ملكولی استفاده می‌شوند بسیار كندتر از آن هستند كه بتوانند تصویری از نوع حركت ملكولهای آب نشان دهند. هاونیت معتقد است می‌توان از امواج تراهرتز در تصویر برداری از این حركات برق آسا استفاده كرد.
لیز یا سنسورهای امواج تراهرتز آنقدر سریع هستند كه می‌توانند این نوع حركات ملكولی را دنبال كنند. فیزیدانان بوخومی تلاش می‌كنند از این تكنولوژی برای ردیابی و نحوه عمل ملكولهای قند استفاده كنند. بررسی‌های صورت گرفته نشان می‌دهند هر ملكول قند حدود صد وده ملكول آب اطرافش را تحت تأثیر قرار میدهد. ایجاد پیوند هیدروژنی ملكولهای آب با قند، نوعی جاذبه ایجاد می‌كند. به علت این كشش ذره‌های آب اطراف قند نمی‌توانند آزادانه به هر سو حركت كنند. اما چرا این پیوند محكم میان قند و آب از خشك شدن و یا یخ زدن سفیده تخم‌مرغ جلوگیری می‌كند؟ فیزیكدان آلمانی هم نمی‌دانند.
هاوینت می‌گوید: ”همه چیز هنوز در حد تئوری است. حتی می‌تواند اینگونه باشد كه چون حركت ملكولی آب كندتر می‌شود، تغییرات پروتئینی هم كندتر می‌شود.“
اما در هر حال این نظریه ثابت می‌كند كه حضور آب در سلولهای زنده حالت خنثی ندارد بلكه آب بصورت فعال در تمامی روندهای سلولی شركت می‌كند و نقش تعیین كننده‌ای بر عهده دارد. هاوینت:
” تعریف تصویری این پروسه مانند این است ملكولهای آب را مثل بازیكنان فوتبال در نظر بگیریم كه از بیرون به درون ضربه می‌زنند و یك پروسه مشخص را راه می‌اندازند حال اگر این ضربه آرامتر باشد پروسه هم آرامتر راه می‌افتد.“
دقیقأ مانند خرسی كه در زمستان به خواب زمستانی فرو می‌رود چون سوخت و ساز درون سلولی‌اش كندتر شده است. سفیده تخم‌مرغ هم به علت كند شدن حركت ملكولهای آب دیرتر یخ می‌زند، دیرتر هم خشك می‌شود. دست تئوری فیزیكی‌ اینگونه به نظر می‌رسد.
اما شاید روزی بتوان پس از شناخت مكانیسم این روند، ضدیخ قندی تولید كرد و یا از این روش برای ساخت داروهای جدید از آن استفاده كرد.
 

[ شنبه چهارم اردیبهشت 1389 ] [ 18:50 ] [ ]

"توضيح دهيد که چگونه مي توان با استفاده از يک فشارسنج ارتفاع يک آسمان خراش را اندازه گرفت؟"

سوال بالا يکي از سوالات امتحان فيزيک در دانشگاه کپنهاگ بود.

يکي از دانشجويان چنين پاسخ داد: "به فشار سنج يك نخ بلند مي بنديم. سپس فشارسنج را از بالاي آسمان خراش طوري آويزان مي کنيم که سرش به زمين بخورد. ارتفاع ساختمان مورد نظر برابر با طول طناب به اضافه‌ي طول فشارسنج خواهد بود."

پاسخ بالا چنان مسخره به نظر مي آمد که مصحح بدون تامل دانشجو را مردود اعلام کرد. ولي دانشجو اصرار داشت که پاسخ او کاملا درست است و درخواست تجديد نظر در نمره ي خود کرد. يکي از اساتيد دانشگاه به عنوان قاضي تعيين شد و قرار شد که تصميم نهايي را او بگيرد.

نظر قاضي اين بود که پاسخ دانشجو در واقع درست است، ولي نشانگر هيچ گونه دانشي نسبت به اصول علم فيزيک نيست. سپس تصميم گرفته شد که دانشجو احضار شود و در طي فرصتي شش دقيقه اي پاسخي شفاهي ارائه دهد که نشانگر حداقل آشنايي او با اصول علم فيزيک باشد.

دانشجو در پنج دقيقه ي اول ساکت نشسته بود و فکر مي کرد. قاضي به او يادآوري کرد که زمان تعيين شده در حال اتمام است. دانشجو گفت که چندين روش به ذهنش رسيده است ولي نمي تواند تصميم گيري کند که کدام يک بهترين مي باشد.

قاضي به او گفت که عجله کند، و دانشجو پاسخ داد: "روش اول اين است که فشارسنج را از بالاي آسمان خراش رها کنيم و مدت زماني که طول مي کشد به زمين برسد را اندازه گيري کنيم. ارتفاع ساختمان را مي توان با استفاده از اين مدت زمان و فرمولي که روي کاغذ نوشته ام محاسبه کرد."

دانشجو بلافاصله افزود: "ولي من اين روش را پيشنهاد نمي کنم، چون ممکن است فشارسنج خراب شود!"

"روش ديگر اين است که اگر خورشيد مي تابد، طول فشارسنج را اندازه بگيريم، سپس طول سايه ي فشارسنج را اندازه بگيريم، و آنگاه طول سايه ي ساختمان را اندازه بگيريم. با استفاده از نتايج و يک نسبت هندسي ساده مي توان ارتفاع ساختمان را اندازه گيري کرد. رابطه ي اين روش را نيز روي کاغذ نوشته ام."

"ولي اگر بخواهيم با روشي علمي تر ارتفاع ساختمان را اندازه بگيريم، مي توانيم يک ريسمان کوتاه را به انتهاي فشارسنج ببنديم و آن را مانند آونگ ابتدا در سطح زمين و سپس در پشت بام آسمان خراش به نوسان درآوريم. سپس ارتفاع ساختمان را با استفاده از تفاضل نيروي گرانش دو سطح بدست آوريم. من رابطه هاي مربوط به اين روش را که بسيار طولاني و پيچيده مي باشند در اين کاغذ نوشته ام."

"آها! يک روش ديگر که چندان هم بد نيست: اگر آسمان خراش پله ي اضطراري داشته باشد، مي توانيم با استفاده از فشارسنج سطح بيروني آن را علامت گذاري کرده و بالا برويم و سپس با استفاده از تعداد نشان ها و طول فشارسنج ارتفاع ساختمان را بدست بياوريم."

"ولي اگر شما خيلي سرسختانه دوست داشته باشيد که از خواص مخصوص فشارسنج براي اندازه گيري ارتفاع استفاده کنيد، مي توانيد فشار هوا در بالاي ساختمان را اندازه گيري کنيد، و سپس فشار هوا در سطح زمين را اندازه گيري کنيد، سپس با استفاده از تفاضل فشارهاي حاصل ارتفاع ساختمان را بدست بياوريد."

"ولي بدون شک بهترين راه اين مي باشد که در خانه ي سرايدار آسمان خراش را بزنيم و به او بگوييم که اگر دوست دارد صاحب اين فشارسنج خوشگل بشود، مي تواند ارتفاع آسمان خراش را به ما بگويد تا فشارسنج را به او بدهيم!"

دانشجويي که داستان او را خوانديد، نيلز بور، فيزيکدان دانمارکي بود.

زندگينامه نيلز بور

نيلز بور (1962-1885) در كپنهاك دانمارك متولد شد. در همان جا به تحصيلات خود ادامه داد و در سالبه دريافت دكتراي فيزيك نائل آمد در سال1912 در آزمايشگاه رادرفورد در منچستر انگلستان كه مركز تحقيق درباره راديواكتيويته و ساختمان اتمي بود به كار مشغول شد. در آنجا بود كه تئوري ساختمان اتمي خود را براي توضيح خواص شيميايي و طيفهاي اتمي ابداع كرد و توسعه داد. پس از آن در توسعه مكانيك كوانتومي، در پيشبرد فيزيك جديد نقش مهمي ايفا كرد. در آخرين سالهاي زندگي بيشتر وقت خود را براي پيشبرد طرحهايي براي همكاري بين‌المللي و كاربرد صلح آميز فيزيك هسته‌اي صرف مي‌كرد.

«فيزيك كلاسيك» اشاره به بخشهايي از فيزيك است كه پيش از آغاز قرن بيستم ميلادي و بر اساس مكانيك نيوتوني، الكترومغناطيس ماكسول و ترموديناميك كارنو پايه‌گذاري شد.

چون تصور بور درباره هسته با تصور رادرفورد يكيكاتودي، دستخوش تغيير مي‌شد. بنابراين چنين استنباط شد كه اين بارهاي الكتريكي مركب از ذرات باردار منفي هستند.در سال 1898 ج.ج تامسن نسبتq/mاين ذرات گسيل يافته فوتوالكتريكي را با همان روشي كه در مورد ذرات پرتوكاتودي به كار برده بود، اندازه‌گيري كرد او براي ذراتي كه در اثر فوتوالكتريك به بيرون پرتاب مي‌شدند، همان مقدار را به دست آورد كه قبلاً براي ذرات پرتوكاتودي پيدا كرده بود. با اين آزمايشها (و آزمايشهاي ديگر) معلوم شد كه ذرات فوتوالكتريك همان خواص الكترونها را دارند. در واقع فيزيكدانها اين ذرات  را الكترونهاي عادي به حساب مي‌آورند با اين همه گاهي آنها را فوتوالكترون مي‌نامند تا منشأ آنها مشخص شود، كارهاي بعدي نشان داد كه همه مواد (جامدات، مايعات و گازها) در شرايط مناسب اثر فوتوالكتريك از خود نشان مي‌دهند. اما آسانتر آن است كه بررسي اين اثر را با سطوح فلزي آغاز كنيم.

[ شنبه چهارم اردیبهشت 1389 ] [ 17:34 ] [ ]
این نوع خازن‌ها شامل مایع یا خمیری است که آن را الکترولیت می‌نامند. در این الکترولیت ، جوشن آلومینیومی جای داده شده ‌است که سطح نسبتا زیادی دارد. ترکیب ماده الکترولیت متفاوت است و هر کارخانه ترکیب مخصوص خود دارد که به‌صورت مایع یا خمیر داخل ظرف استوانه‌ای شکل آلومینیومی آب‌بندی شده قرار دارد.
 
 
عملکرد
وقتی که فشاری بین الکترولیت و آلومینیوم گذاشته می‌شود (آلومینیوم به پتانسیل مثبت متصل می‌شود) ، جریانی که برقرار می‌شود، باعث تجزیه الکترولیت می‌گردد و پوششی از آلومین (اکسید آلومینیوم) به دور جوشن آلومینیومی بسته می‌شود و چون به این ترتیب آن را عایق می‌کند، باعث قطع شدن جریان می‌گردد. چون ضخامت این پوشش کم است (چند هزارم میلی‌متر) ، بخوبی فهمیده می‌شود که ظرفیت این خازن ها که آلومینیوم و الکترولیت دو جوشن آن را تشکیل می‌دهند تا چه اندازه زیاد است.
خازنهای الکترولیت بر خلاف خازنهای معمولی"پلاریزه" یعنی جهت‌دار هستند و اجبارا باید قطب مثبت فشار را به آلومینیوم متصل کرد. اگر قطبها را برعکس متصل کنیم، خطر از بین بردن خازن پیش می‌آید. بنابراین نباید به چنین خازنی فشار متناوب وارد کرد. هر نوع از این خازنها برای فشار معین و کار مشخص از طرف کارخانه سازنده ساخته شده ‌است و از حدود آن نباید تجاوز کرد. حتی ظرفیت این خازن بستگی به فشاری که به دو جوشن آن گذاشته می‌شود، دارد. هر چه فشار بالاتر رود، ظرفیت کم می‌شود.
 
 
خازن الکترولیت تحت فشار بالا
اگر خازن الکترولیت تحت فشار ، لحظه ای زیادتر از حد مجاز قرار گیرد، انفجار بوجود می‌آید (یعنی دو جوشن ، جرقه زده و صدای انفجار بگوش می‌رسد). ولی خطر زیادی متوجه خازن نمی‌شود، زیرا بزودی پوشش ، آلومین دوباره تشکیل می‌گردد. در مورد خازنهای کاغذی اینطور نیست، زیرا کاغذ در اثر جرقه می‌سوزد و تبدیل به کربن می‌شود و باین ترتیب خاصیت عایق بودن خود را از دست می‌دهد و کم و بیش دو جوشن را به یکدیگر اتصال کوتاه می‌دهد.

مشخصات خازنهای الکترولیتی
▪ خازنهای الکترولیتی در اندازه‌های مختلف وجود دارد و از لحاظ اتصال به مدار دو قطب مثبت و منفی کاملا مشخص است تا بطور صحیح به مدار بسته شود و گرنه غشاء نازک عایق آن از میان می‌رود و به اجزائی از مدار که قبل از خازن قرار دارد آسیب می‌رسد.
▪ خازنهای الکترولیت با ظرفیت و ولتاژ مجاز زیاد دارای حجم نسبتا بزرگی است و بوسیله سیم پیچ و مهره و پولک یا بست روی شاسی نصب و محکم می‌شود. قطب مثبت با رنگ قرمز و قطب منفی با رنگ سیاه کاملا مشخص است. گاهی نیز قطب مثبت به بدنه آلومینیومی متصل است و گیره مخصوص ندارد.
▪ خازنهای الکترولیت معمولا دارای جلد فلزی هستند که به این ترتیب با ماده الکترولیت ارتباط داشته و به قطب منفی متصل می‌شوند.
▪ ظرفیت خازنهایی که بیشتر مورد استفاده قرار می‌گیرند، بین ۸ تا ۳۲ میکروفاراد است.

کاربرد
▪ خازنهای الکترولیتی بیشتر در جایی که احتیاج به ذخیره مقدار انرژی زیادی باشد، استفاده می‌شود. از این نوع خازنها تا ظرفیت ۲۰۰۰۰ میکروفاراد با حجم نسبتا کوچک می‌توان تهیه نمود.
▪ این خازنها اغلب به عنوان صافی بکار می‌روند.
▪ اغلب در فرکانسهای پایین ، برای دکوپلاژ استفاده می‌شود. بخصوص در مورد دکوپلاژ مقاومتهای پلاریزاسیون.
[ شنبه چهارم اردیبهشت 1389 ] [ 16:37 ] [ ]
به گزارش سایت سرامیران و به نقل از خبرگزاری موج، محققان به تازگی با استفاده از تکنولوژی سلول های خورشیدی توانسته اند دست به ابداع جدیدی بزنند.
به گزارش موج ، محققان به تازگی شیشه های مربایی ابداع کرده اند که شب ها به نور افشانی می پردازند.
در این شیشه ها تعدادی سلول خورشیدی کار گذاشته شده است.
این شیشه های مربا در طول روز به مدت چند ساعت در معرض نور مستقیم آفتاب قرار می گیرند و سلول های آنها شارژ می شوند و سپس درطول شب با استفاده از سه لامپ کوچک تعبیه شده درونشان به نور افشانی می پردازند.
نور تولید شده دراین شیشه ها به طور کامل پخش خواهد شد و لامپ های رنگی (LED) کار گذاشته شده در آن ، علاوه بر گرمای خاصی که تولید می کند کاملا به طور طبیعی نور افشانی خواهد کرد.
جالب است بدانیم که هیچگونه کلیدی در این شیشه های مربا برای خاموش و روشن کردن لامپ وجود ندارد بلکه یک حسگر در این شیشه تعبیه شده که با تاریک شدن هوا شروع به نور افشانی می کند و با روشن شدن محیط اطراف خاموش می شود.
شیشه مرباهای نورافشان نه تنها خیلی زیبا هستند بلکه بسیار طبیعی بوده و نور افشانی جالب آنها محیط زیبایی را فراهم می آورد.
باطری های شارژی مورد استفاده در این شیشه ها از نوع AA بوده که تعویض پذیر نیز می باشد.
[ جمعه سوم اردیبهشت 1389 ] [ 18:32 ] [ ]
 


 یکی از مهمترین کمیتهای مشخصه مواد رادیو اکتیو ، نیم عمر آنها می‌باشد. یعنی مدت ‏زمانی که در طی آن نصف ماده اولیه تجزیه می‌شوند. تحقیقات انجام شده نشان ‏می‌دهد که از ۱۰۰۰۰۰۰ اتم پلوتونیوم ۲۱۸ ، موجود در یک نمونه تازه تهیه شده ماده ‏رادیواکتیو ، پس از ۲۰ دقیقه فقط حدود ۱۰۰۰۰ اتم پلوتونیوم باقی می‌ماند و بقیه به ‏اتم‌های سرب ۲۱۴ و محصولات نوزاد آن مبدل می‌شوند. پس از تهیه نمونه خالصی از ‏Po‏۲۱۸ ، برای آنکه ۵۰% اتمهای موجود در آن تباهی پیدا ‏کنند، فقط ۳ دقیقه زمان لازم است. در مورد رادیوم ( ‏‎Ra ۲۲۶‏ ) ، ۱۶۲۰ سال طول ‏می‌کشد. که نیمی از اتمهای رادیوم در یک نمونه تازه تهیه شده آن به اتمهای ‏رادن تبدیل ‌شوند. ‏ 
● سرعت تباهی:‏ دو مثال بالا نمایانگر این واقعیت تجربی است که نمونه‌های عناصر رادیو اکتیو از لحاظ ‏سرعت تباهی باهم تفاوت بسیار دارند. اگر سرعتهای متفاوت حاصل از میانگینهای ‏رادیواکتیوی را در نظر بگیریم، هرگز نمی‌توانیم بگوییم که چه وقت دچار تباهی خواهند ‏شد. بعضی از آنها ممکن است به محض تولید شدن دچار تباهی شوند و بعضی ‏دیگر ممکن است هرگز تباهیده نشوند. 
● تجزیه رادیواکتیو:‏ به طور تجربی معلوم شده است که برای گروه بزرگی از اتمهای یک نوع ماده ‏رادیواکتیوی کسری از این اتمها که در هر ثانیه دچار تباهی می‌شوند، تعییرناپذیر است و ‏همیشه برای گروه بزرگی از اتمهای آن نوع ماده رادیواکتیو ، یکسان است. این کسر ‏تقریبا به طور کمی مستقل از تمام شرایط فیزیکی و شیمیایی ، مثلا دما ، فشار و ‏شکل ترکیب شیمیایی است. این خواص برجسته رادیواکتیویته شایان توجه خاصی است. زیرا پایه‌ای برای فهم ‏رادیواکتیویته است. مثلا فرض کنید که ۱۰۰۰/۱ اتمهای یک نمونه خالص تازه تهیه شده ‏در طول یک ثانیه تباهیده شوند. در این صورت انتظار خواهیم داشت که ۱۰۰۰/۱ اتمهای ‏باقیمانده در یک ثانیه بعد دچار تباهی شوند. به این ترتیب ۱۰۰۰/۱ اتمهای باقیمانده ‏پس از ده ثانیه نیز در طول ثانیه یازدهم تباهیده می‌شوند و همین طور تا آخر. 
● نیم عمر چیست؟ واقع امر این است که در طول هر ثانیه متوالی از زمان ۱۰۰۰/۱ اتمهای باقیمانده در آغاز ‏آن ثانیه دچار تباهی می‌شود. این عمل دست کم تا آنجا ادامه دارد که تعداد اتمهای ‏باقیمانده به قدری کوچک شوند که پیشگویی های ما بسیار نامطمئن باشد. چون کسری از ‏اتمها که در هر ثانیه نابود می‌شود، برای هر عنصر ثابت است. عده اتمهایی که در واحد زمان دچار تباهی می‌شوند به نسبت کاهش عده اتمهایی ‏که هنوز تغییر نیافته‌اند، تقلیل می‌یابد. برای اورانیوم ۲۳۸ که مادر سری اورانیوم است، ‏‏نیم عمر ، ۴.۵ بیلیون سال است. این بدان معنی است که پس از ‏‎ ‎‎۴.۵x۱۰۹ ‎سال ، نصف اتمهای اورانیوم ۲۳۸ دچار تباهی می‌شوند. برای ‏پلونیوم ۲۱۴ ، نیم عمر از مرتبه ‏‎۱۰-۴‎‏ ثانیه است. یعنی فقط در ۱۰۰۰۰/۱ ‏ثانیه ، نصف یک نمونه اصلی از اتمها ‏‎۲۱۴Po‏ می‌شوند. هرگاه نمونه‌های خالصی شامل عده اتمهای برابر ، از هر یک از آنها موجود باشد، ‏فعالیت اولیه (اتمهایی که در ثانیه دچار تباهی می‌شوند) پولونیم ۲۱۴ بسیار قوی و ‏فعالیت اولیه اورانیوم ۲۳۸ بسیار ضعیف خواهد بود. لیکن اگر حتی یک دقیقه بگذرد ‏پولونیم کلا نابود می‌شود و بنابراین ، عده اتمهای باقیمانده آن به قدری کم می‌شود ‏که در این حالت فعالیت پولونیم کمتر از فعالیت اورانیوم خواهد بود. ‏
 ● محاسبه نیم عمر: شاید مدتها پیش عناصر رادیواکتیو به مقدار زیاد وجود داشته و چنان به سرعت نابود شده‌اند که امروز هیچ اثر قابل اندازه‌گیری از آن به جا نمانده است. از طرف دیگر ‏بسیاری عناصر رادیو اکتیو چنان به کندی نابود می‌شوند که در حین هر بار آزمایش ‏عادی ، سرعتهای شمارش که تباهی را نشان می‌دهد، به نظر ثابت می‌ماند.‏ برای هر عنصر با نیم عمر ‏T½‎‏ ، صرف نظر از کهنگی نمونه ، پس از گذشت فاصله ‏زمانی ‏T½‎‏ بازهم نصف اتمهای آن باقی خواهد ماند. بنابراین ، نیم عمر را نباید به عنوان ‏علامت اختصاری برای "نصف یک عمر" تصور کرد. اگر نصف اتمهای اصلی پس از زمان ‏T½‎‏ بدون تغییر باقی بماند، پس از دو فاصله زمانی نیم عمر متوالی ‏T½‎‏ ، یک چهارم ‏‏(‏‎½‎‏×‏‎ ½‎‏) ، و پس از ‏T ½‎‏۳ ، یک هشتم اتمها و همچنین تا آخر باقی خواهد ماند.

منبع :
متن لز elmiran1.mihanblog.ir

 

[ جمعه سوم اردیبهشت 1389 ] [ 17:59 ] [ ]

متابی سولفیت سدیم بعنوان یک احیا کننده نگهدارنده مواد غذایی و سفید کننده در صنایع مختلف جهت مواردی از قبیل ذیل استفاده میگردد:
▪ در صنایع غذایی بعنوان نگهدارنده و جلوگیری کننده از فساد مواد غذایی بخصوص در میگوِ، آب میوه
سرکه و آبلیمو ، غذاهای دریایی ،میوه جات خشک و غیره.
▪ در صنایع عکاسی در محلول ظهور جهت اسیدی کردن محلول ثبوت .
▪ در صنایع چرمسازی جهت آهک زدایی پوست .
▪ در صنایع آبکاری جهت تصفیه فاضلاب حاوی یون کروم شش ظرفیتی و جهت جدا کردن کلر اضافی بعد از ازبین رفتن یون سیانید .
▪ در صنایع کاغذ سازی جهت سفید گری
▪ در صنایع شیمیایی بعنوان احیا کننده جهت خالص سازی و جداسازی آلدییدها و کتونها و برای تولید سولفوکسیناتها “ماده پایه شامپو بچه”و جهت تولید بعضی رنگهای آلی .
▪ در صنایع نساجی بعنوان تمیز و سفید کننده پشم و دیگر الیاف طبیعی ،جهت تولید رنگهای خمره ای
بعنوان حذف کننده کلر بعد از سفیدگری نایلون و بعنوان فعال کننده در پلیمریزاسیون اکریلو نیتریل.
▪ در صنایع دارویی حهت تولید استامینوفن و به مقدار کم به بعضی از داروها اضافه میشود .
▪ در صنعت ساختمان جهت تولید روان کننده بتون و غیره
▪ در صنعت تصفیه آب جهت کلر زدایی آب قبل از ورود آب به سیستم اسمز معکوس

شکلات
شکلات از دانه های درختی بنام تیوبروما کاکایو بدست می آید ، تیوبروما یک لغت یونانی است به معنی “غذای پادشاهان “!!! آزتک ها “بومیان امریکای مرکزی ” از قرنها قبل این درخت را حسابی تحویل میگرفتند
و حتی از دانه های آن بعنوان پول استفاده میکردند ، همین آزتک ها بودند که کشف کردند با له کردن دانه های این درخت و اضافه کردن ادویه به آن ، میتوانند یک نوشیدنی تلخ اما قوی درست کنند .
در قرن شانزدهم ، دریانوردان اروپایی این ماده را در بازگشت از امریکا به کشورهای خودشان بردند و به آن شکر اضافه کردند و خیلی زود این ماده تلخ و شیرین تبدیل به یک نوشیدنی پر طرفدار گران و لوکس در اروپا شد.
حدود سال ۱۸۰۰ میلادی اولین شکلاتهای کاکایویی با اختراع تکنیک های قالب گیری به بازار آمد ، با استفاده از آسیابهای مکانیکی می شد به راحتی دانه های درخت کاکایو را له و پودر نرمی از آن درست کرد ، با گرم کردن و ریختن این پودر در قالب اولین شکلات کاکایویی متولد شد .
در سال ۱۸۲۵ یک هلندی موفق شد که از دانه های کاکایو کره بگیرد ، به این ترتیب یک قدم بزرگ دیگر در صنعت شکلات سازی برداشته شد .
چندین سال بعد رودلف لینت سوییسی ، کره کاکایو را به شکلات کاکایویی اضافه کرد تا نرمتر شوند .
در سال ۱۸۷۵بود که سوییس دنیل با بکار بردن شیر در ساخت شکلات ، شکلاتهایی نرمتر و شیرین تر از شکلاتهای کاکایویی ساخت ، وقتی که کارخانه نستله ، شیر را به صورت پودر یا همان شیر خشک تولید کرد شکلاتهای شیری رونق گرفتند چرا که پودر شیر خیلی بهتر از شیر مایع با کاکایو مخلوط میشد .
در حقیقت کره کاکایو ، که مهمترین ماده تشکیل دهنده شکلات است مخلوطی از چربیهای سیر شده و سیر نشده ” تری گلیسریدها”است که مقادیر نسبی آنها به کشور مبدا بستگی دارد، برخی از تری گلیسریدهای سیر نشده در کره کاکایو نقطه ذوب پایینی دارند و همین باعث میشود که در دمای اتاق تا اندازه ای به حالت مایع در آیند ، افزودن چربی شیر به شکلات مقدار تری گلیسریدهای سیر نشده در آن را بالا میبرد و نسبت چربی مایع را زیاد میکند و به همین دلیل است که شکلات شیری نرمتر از شکلاتهای تیره هستند .
سطح یک شکلات با کیفیت خوب شامل تعداد زیادی بلور ریز و کوچک چربی است که میتوانند نور را منعکس کنند و به آن ظاهری براق بدهند ، هر گونه شکاف ، ترک و یا حتی اثر انگشت روی سطح شکلات میتواند باعث بزرگ شدن بلورهای کوچک و نوک تیز چربی شود ، وقتی بلورها به اندازه ای برسند که بتوانند نور را از سطح پراکنده سازند به شکلات ظاهری کدر و مات خواهند داد
سولفات سدیم از جمله مواد پر کاربرد در صنعت نساجی است و بیشتر به عنوان یکنواخت کننده در نسخه ی رنگرزی استفاده می شود تا در نهایت رنگرزی یکنواختی حاصل شود .مکانیزم عملکرد ان نیز بر مبنای یونیزاسیون ان و انتقال یونی سولفات است ..

و در مورد سفید گری کالای پروتئینی بی سولفیت های سدیم همانطور که گفته شد نقش کلرزدایی دارند چرا که هرگاه کالای پروتینی را با کلریت سدیم سفیدگری کنیم کالای سفید شده ته رنگ صورتی بخود می گیرد که باید این ته رنگ را با بی سولفیت سدیم برطرف نمود

منبع :
متن از academist.ir

[ پنجشنبه دوم اردیبهشت 1389 ] [ 22:51 ] [ ]

در عصر حاضر پیشرفت فناوری به پیشرفت هایی که در زمینه مواد حاصل شده است ، بستگی دارد. مواد مرکب ، نشانه گامهای بزرگی است که در راه تکامل مواد مهندسی برداشته شده است.

با ترکیب فیزیکی ۲ یا چند ماده نه تنها مواد سبک تر و محکم تری به دست می آید که جایگزین مصالح سنتی از قبیل فلزات ، سرامیک ، چوبها و پلیمرهای معمولی می شوند بلکه می توان با توجه به کاربرد موردنظر، خواص مشخصی را در این مواد ایجاد کرد.
در ترکیب فیزیکی اجزای تشکیل دهنده ماهیت خود را کاملا حفظ می کنند اما در برخی از مواد مرکب پیشرفته برای بهبود خواص ، اصلاحات جزیی سطحی در مورد مواد تشکیل دهنده اعمال می شود.
با توجه به اهمیت و نقش مواد مرکب در توسعه فناوری های نوین محققان دانشگاه تربیت مدرس برای نخستین بار در کشور ، امکان ساخت تخته های چوب پلاستیک را با استفاده از ۲ روش مورد بررسی قرار داده اند و موفق به ساخت چوب پلاستیک از ضایعات خرده چوب و پلی اتیلن سنگین شده اند.
ماده مرکب که از ترکیب ۲ یا چند ماده به دست می آید معمولا از یک یا چند فاز ناپیوسته و یک فاز ضعیف پیوسته که همان ماده زمینه است تشکیل شده است. فاز ناپیوسته معمولا سخت تر و قوی تر از فاز پیوسته است و به همین دلیل به آن فاز تقویت کننده نیز می گویند. فاز ناپیوسته می تواند نقش پرکنندگی را در ترکیب ایفا کند. پرکننده ها موادی بی اثر هستند که به پلیمرها اضافه می شوند تا هزینه ساخت مواد مرکب را کاهش و برخی از خواص فیزیکی مانند سفتی و سختی آنها را افزایش دهند. پلیمرهای تقویت شده با الیاف و پرکننده های معدنی ، مصنوعی و آلی از مهمترین مواد مرکب هستند که سالانه مقادیر بسیار زیادی از آنها در سراسر دنیا تولید می شود.مواد مرکب چوب پلاستیک که به اختصار wpc نامیده می شوند، مخلوطی از مواد لیگنوسلولزی و پلاستیک هستند که ظاهری شبیه چوب دارند اما به وسیله فرآیندهای تولید پلاستیک شکل می گیرند و با تجهیزات صنایع چوب قابل برش ، متر و سمباده زنی و... هستند.
اگر درصد مواد لیگنوسلولزی از ۵۰درصد کمتر باشد خواص محصول بیشتر به پلاستیک نزدیک است اما اگر درصد مواد لیگنوسلولزی از ۵۰درصد بیشتر باشد خواص محصول تولیدی به چوب نزدیک تر است.
کامپوزیت های با ترکیب های چوب پلاستیک در بسیاری از کشورهای پیشرفته بسرعت در حال تولید و گسترش هستند. در ساخت این مواد مرکب محدوده وسیعی از پلیمرها مانند پروپیلن ، پلی اتیلن ، پلی وینیل کلراید ، پلی استرو و... همراه پرکننده های سلولزی شامل آرد و الیاف چوب ، کتان ، کنف ، بامبو، کاه ، کلش و... مورد استفاده قرار می گیرند.به دنبال افزایش نسبی قیمت پلاستیک در سالهای گذشته ، افزودن پرکننده های طبیعی به منظور کاهش هزینه ها در صنعت پلاستیک و در برخی موارد افزایش تولید ، مورد توجه قرار گرفت.
کاهش قیمت ، افزایش قابلیت پرکنندگی و دسترسی به انواع گوناگونی از الیاف از مهمترین مزایای استفاده از این مواد در مقایسه با پرکننده های معدنی مانند رس ، تالک ، آهن و الیاف مصنوعی مانند شیشه و کربن است.
قابلیت تخریب بیولوژیکی در طبیعت ، تجدیدپذیری و عدم تولید مواد سمی پس از سوختن نیز از دیگر ویژگی های مواد مرکب چوب پلاستیک است.


‌بازیافت ضایعات
به گفته مهندس مجید چهارمحالی ، دانش آموخته علوم و صنایع چوب و کاغذ از دانشگاه تربیت مدرس و مجری این طرح در مواد مرکب چوب پلاستیک دامنه وسیعی از پرکننده ها و تقویت کننده های سلولزی شامل پودر و الیاف حاصل از مواد چربی و بقایای محصولات کشاورزی و همچنین ضایعات حاصل از انواع کاغذ قابل استفاده است.
ویژگی های مواد چوب پلاستیک با ساختار آنها ارتباط مستقیم دارد.در این مواد پلاستک به صورت لایه نازکی ذرات چوب را می پوشاند. این مواد مرکب ، ویژگی های هر دو ماده اصلی تشکیل دهنده آنها یعنی چوب و پلاستیک را با هم دارند. سختی و مقاومت این مواد بین سختی چوب و پلاستیک است اما چگالی آن به طور کلی بالاتر از هر دوی آنها خواهد بود.این مواد در برابر قارچ زدگی و حمله حشرات مقاوم و در شکل های پیچیده نیز قابل تولید هستند. گفتنی است این ماده شکل ظاهری بسیار زیبایی دارد و در ساختار، ابعاد و اشکال مختلف قابل عرضه است.
مواد مرکب چوب پلاستیک ضایعات بسیار کمی تولید می کنند و ضایعات تولید شده نیز قابل مصرف مجدد هستند و جالب این که می توان از ضایعات چوبی و پسماندهای کشاورزی و حتی ضایعات پلاستیکی درون زباله ها به عنوان مواد اولیه در تولید این ماده استفاده کرد. به گفته چهارمحالی ، یکی از عمده ترین مشکلاتی که بر اثر برداشت از طبیعت برای جوامع انسانی به وجود آمده مواد زاید است که به عنوان محصول مصرف و توسعه روی دست انسان مانده و رفع آنها تلاش و هزینه های گزافی را طلب می کند. بازیافت مواد موثرترین راه برای جلوگیری از انباشته شدن مواد زاید است که دامنه و ابعاد آن در زندگی امروز انسان ها افزایش یافته است.
گستردگی کاربرد مواد پلاستیکی در زندگی کنونی انسان ها و مصرف روزافزون آنها سبب شده است حجم زیادی از این مواد پس از استفاده به صورت ضایعات دور ریخته شوند. در ایران نیز ضایعات پلاستیکی حجم زیادی از زباله های شهری ، روستایی و صنعتی کشور را تشکیل می دهند. این ترکیبات قابل تجزیه بیولوژیکی نیستند و زمانی که در محیط پراکنده شوند مشکلات زیادی را برای محیط زیست ایجاد خواهند کرد بنابراین بازیافت این مواد از نظر زیست محیطی و اقتصادی بسیار حائزاهمیت است و بازیابی ضایعات پلاستیک از مدتها پیش به عنوان مساله ای مهم توجه کارشناسان را به خود معطوف داشته است.
مناسب ترین راه افزایش ، چرخه زندگی مواد است. با توجه به حجم قابل توجه ضایعات پلاستیک و ضایعات مواد لیگنوسلولزی (چوبی) بازیابی و مصرف مجدد این مواد ضروری خواهد بود.

 
ترکیبی از چوب و پلاستیک
با توجه به ویژگی های بسیار خوب مواد مرکب چوب پلاستیک ، این مواد در زمینه های مختلفی مورد استفاده قرار گرفته اند و استفاده از آنها بسرعت رو به افزایش و گسترش است.
تجارت مواد مرکب چوب پلاستیک از سال ۱۹۹۸ رشد ۲۵درصدی داشته است. تقاضا برای تولید این ماده مرکب در امریکای شمالی و اروپا از ۵۰ هزار تن در سال ۱۹۹۵ به ۷۰هزار تن در سال ۲۰۰۲ رسیده است.
پیش بینی می شود WPCها تا سال ۲۰۱۰ از رشد سالانه ۱۴درصدی برخوردار باشند. تجارت این ماده که ترکیبی از ۲ماده شناخته شده است ، بیشترین رشد را در بخشهای مختلف صنعت پلاستیک داشته است.
خوشبختانه یکی از مزایای مهم مواد مرکب چوب پلاستیک این است که می توان در تولید آنها از ضایعات پلاستیک و الیاف طبیعی بازیافتی استفاده کرد که می تواند تامین کننده منبع فراوان و ارزانی در ساخت موادی باشد که بدون استفاده از مواد اولیه خام تهیه می شوند. با استفاده از این ضایعات و افزایش تقاضا برای آنها این مواد به نوعی ارزش مادی دست می یابند که عاملی برای ایجاد انگیزه در جمع آوری این مواد خواهد بود. از این ماده در ساخت کفپوش و دیوارپوش بخشهای داخلی و خارجی ساختمان و پوشش های عایق صوتی می توان استفاده کرد. همچنین از چوب پلاستیک می توان در ساخت مبلمان شهری و خانگی ، کابینت و قسمتهای داخلی ساختمان نیز استفاده کرد. با توجه به بررسی های انجام شده تجهیزات پارک بازی کودکان و چارچوب در و پنجره ساختمان ها نیز می توانند از چوب پلاستیک تهیه شوند.

جایگزینی مناسب
به گفته چهارمحالی ، برای تولید مواد مرکب چوب پلاستیک با در نظر گرفتن خلوص و کاربرد متفاوتی که برای محصول تولیدی مطرح شده است ، از روشهای مختلفی استفاده می شود. با استفاده از روش پرس گرم می توان تخته هایی با ابعاد بزرگ تولید کرد و همچنین امکان استفاده از حجم بالای الیاف که از قابلیت تجزیه بیولوژیکی برخوردارند سازگاری آنها را با محیط افزایش می دهد. تخته های ساخته شده به این روش رقیب جدی تخته های ام دی اف هستند زیرا یکی از مهمترین معایب این محصولات انتشار گاز فرمالدهید است که با استفاده از تخته های چوب پلاستیک این مشکل از میان برداشته خواهد شد. علاوه بر این ، در ساخت تخته های چوب پلاستیک می توان از ضایعات لیگنوسلولزی مانند ذرات ریز حاصل از سمباده زنی که در ساخت تخته های ام دی اف قابل استفاده نیستند، استفاده کرد.با توجه به ویژگی های ماده مرکب چوب پلاستیک و در نظر گرفتن این که پرکننده های آلی و طبیعی می توانند تا حدود ۸۰درصد وزنی ماده مرکب را تشکیل دهند ، تقاضا برای الیاف چوب و دیگر الیاف طبیعی به عنوان تقویت کننده و پرکننده در سال ۲۰۰۰ نسبت به سال ۱۹۹۹ از رشد ۱۳۵ درصدی برخوردار بوده و در مقایسه با ۵سال گذشته بیشترین مقدار را داشته است بنابراین با ورود الیاف و پرکننده های طبیعی به صنعت پلاستیک ، مواد مرکب چوب پلاستیک که ترکیبی از الیاف چوب یا دیگر مواد لیگنوسلولزی به عنوان پرکننده یا تقویت کننده است تولید شده است.
در واقع این ماده مرکب از نوادگان ۲ ماده کاملا متفاوت یعنی چوب و پلاستیک محسوب می شود. چهارمحالی در پایان خاطرنشان کرد این مواد کاربردهای زیادی دارند و می توانند براحتی در بیشتر موارد جایگزین تولیدات چوبی و پلاستیکی شوند. ساختمان سازی ، دکوراسیون داخلی و خارجی ساختمان ها و خودروسازی از مهمترین زمینه های کاربرد این مواد هستند. این در حالی است که بزرگترین و سریع ترین رشد بازار برای ماده مرکب چوب پلاستیک به استفاده از این ماده در دکوراسیون خارجی و تولید مواد ساختمانی اختصاص دارد که حدود ۷۰درصد کل تولید این ماده را شامل می شود و جالب این که تاکنون هیچ یک از مواد ساختمانی به چنین بازار تقاضایی نرسیده است.

[ پنجشنبه دوم اردیبهشت 1389 ] [ 16:38 ] [ ]
محققان استرالیایی در حال ساخت شیشه ای جدید هستند که با برخورداری از ویژگی سلولهای خورشیدی نه تنها تولید انرژی کرده بلکه می توان از آن به عنوان نسل جدید پنجره خانه ها و ساختمانهای تجاری استفاده کرد.

محققان استرالیایی در حال ساخت شیشه ای جدید هستند که با برخورداری از ویژگی سلولهای خورشیدی نه تنها تولید انرژی کرده بلکه می توان از آن به عنوان نسل جدید پنجره خانه ها و ساختمانهای تجاری استفاده کرد.

 به گزارش خبرگزاری مهر، پروفسور جان بل از انستیتو منابع پایدار استرالیا معتقد است چنین شیشه ای ممکن است به کاهش چشمگیر آلاینده های کربنی در آینده منجر شود.

وی که با همکاری گروهی از محققان یک شرکت تکنولوژیکی در استرالیا بر روی این پروژه فعالیت می کند گفت : سلولهای خورشیدی که از این طریق ساخته می شوند تحول چشمگیری در کاهش هزینه های ساختمان سازی ایجاد می کنند و در عین حال می توانند به عنوان ذخیره کننده های انرژی اضافی استفاده کرد و حتی با فروش آن درآمدزایی کرد!

این سلولهای خورشیدی شفاف رنگمایه بسیار ضعیف قرمزی دارند با این حال کاملا شفاف به نظر می رسند.

بر اساس گزارش زی نیوز، این سلولها حاوی دی اکسید تیتانویم هستند که با رنگی ویژه پوشیده شده و می توانند ضریب جذب نور را افزایش دهند.

انرژی خورشیدی جذب شده به وسیله این شیشه ها قابل ذخیره شدن و استفاده در گرمایش خانه ها بوده و در عین حال می توانند از تولید حرارت زیاد در خانه ها جلوگیری کند.

[ چهارشنبه یکم اردیبهشت 1389 ] [ 18:31 ] [ ]

آنچه در ادامه مطلب میخوانید :

۱)  ترکیبات CFC

2) کد گذاری ترکیباتCFC 

3) خواص  CFC -12

4) ترکیبات جایگزین CFC

حد مجاز 0.6ppb می باشد .افزایش غلظت کلر موجود در استراتوسفر به موازات مصرف CFC  ها صورت

 گرفته است . در دهه 1980 سالیانه حدود یک میلیون از CFC   در فضا رها شده است

 

کد گذاری CFC ها

برای نامگذای تجارتی این ترکیبات از کلمه فرئون ویک عدد رمز سه رقمی استفاده می کنند . مانند

 فرئون -12یا  (CFC-12 ) که همان  CF2Cl2  می باشد

برای مشخص کردن فرمول یک  CFC از روی نام تجاری آن به عدد رمز CFC مربوطه عدد 90 را می افزائیم .

 در عدد حاصل

 


ادامه مطلب
[ چهارشنبه یکم اردیبهشت 1389 ] [ 16:43 ] [ ]
.: Weblog Themes By Iran Skin :.

درباره وبلاگ

امکانات وب
فروش بک لینک طراحی سایت